Advertisement

Foundations of Physics Letters

, Volume 18, Issue 2, pp 107–121 | Cite as

Complementarity Relations for Multi-Qubit Systems

  • Tracey E. Tessier
Original Article

No Heading

We derive two complementarity relations that constrain the individual and bipartite properties that may simultaneously exist in a multi-qubit system. The first expression, valid for an arbitrary pure state of n qubits, demonstrates that the degree to which single particle properties are possessed by an individual member of the system is limited by the bipartite entanglement that exists between that qubit and the remainder of the system. This result implies that the phenomenon of entanglement sharing is one specific consequence of complementarity. The second expression, which holds for an arbitrary state of two qubits, pure or mixed, quantifies a tradeoff between the amounts of entanglement, separable uncertainty, and single particle properties that are encoded in the quantum state. The separable uncertainty is a natural measure of our ignorance about the properties possessed by individual subsystems, and may be used to completely characterize the relationship between entanglement and mixedness in two-qubit systems. The two-qubit complementarity relation yields a useful geometric picture in which the root mean square values of local subsystem properties act like coordinates in the space of density matrices, and suggests possible insights into the problem of interpreting quantum mechanics.

Key words:

complementarity entanglement entanglement sharing Bayesian interpretation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. J. A. Wheeler and W. H. Zurek, eds., Quantum Theory and Measurement (Princeton University Press, Princeton, 1983).Google Scholar
  2. 2.
    2. B. Schumacher, Phys. Rev. A 54, 2614 (1996).Google Scholar
  3. 3.
    3. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).Google Scholar
  4. 4.
    4. A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    5. N. Bohr, Nature 121, 580 (1928).Google Scholar
  6. 6.
    6. N. Bohr, “Discussion with Einstein on epistemological problems in atomic physics,” in Quantum Theory and Measurement, edited by J. A. Wheeler and W. H. Zurek (Princeton University Press, Princeton, 1983).Google Scholar
  7. 7.
    7. W. Heisenberg, “The physical content of quantum kinematics and mechanics,” in Quantum Theory and Measurement, edited by J. A. Wheeler and W. H. Zurek (Princeton University Press, Princeton, 1983).Google Scholar
  8. 8.
    8. G. Jaeger, M. A. Horne, and A. Shimony, Phys. Rev. A 48, 1023 (1993).Google Scholar
  9. 9.
    9. G. Jaeger, A. Shimony, and L. Vaidman, Phys. Rev. A 51, 54 (1995).Google Scholar
  10. 10.
    10. B.-G. Englert, Phys. Rev. Lett. 77, 2154 (1996). Google Scholar
  11. 11.
    11. B.-G. Englert and J. A. Bergou, Opt. Commun. 179, 337 (2000).Google Scholar
  12. 12.
    12. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997).Google Scholar
  13. 13.
    13. A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, Phys. Rev. A 63, 063803/1 (2001).Google Scholar
  14. 14.
    14. S. Durr, T. Nonn, and G. Rempe, Phys. Rev. Lett. 81, 5705 (1998).Google Scholar
  15. 15.
    15. P. D. D. Schwindt, P. G. Kwiat, and B.-G. Englert, Phys. Rev. A 60, 4285 (1999).Google Scholar
  16. 16.
    16. G. Jaeger, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, Phys. Rev. A 68, 022318/1 (2003).Google Scholar
  17. 17.
    17. M. Jakob and J. A. Bergou, “Quantitative complementarity relations in bipartite systems,” unpublished, arXiv.org e-print quant-ph/0302075.Google Scholar
  18. 18.
    18. V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A. 61, 052306/1 (2000).Google Scholar
  19. 19.
    19. G. Vidal, J. Mod. Opt. 47, 355 (2000).Google Scholar
  20. 20.
    20. P. Rungta and C. M. Caves, Phys. Rev. A 67, 012307/1 (2003).Google Scholar
  21. 21.
    21. W. K. Wootters, Quantum Inf. Comput. 1, 27 (2001).Google Scholar
  22. 22.
    22. W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).CrossRefGoogle Scholar
  23. 23.
    23. K. Zyczkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, Phys. Rev. A 58, 883 (1998).Google Scholar
  24. 24.
    24. S. Ishizaka and T. Hiroshima, Phys. Rev. A 62, 022310/1 (2000).Google Scholar
  25. 25.
    25. F. Verstraete, K. Audenaert, and B. De Moor, Phys. Rev. A 64, 012316/1 (2001).Google Scholar
  26. 26.
    26. W. J. Munro, D. F. V. James, A. G. White, and P. G. Kwiat, Phys. Rev. A 64, 030302(R)/1 (2001).Google Scholar
  27. 27.
    27. T.-C. Wei, K. Nemoto, P. M. Goldbart, P. G. Kwiat, W. J. Munro, and F. Verstraete, Phys. Rev. A 67, 022110/1 (2003).Google Scholar
  28. 28.
    28. G. Adesso, F. Illuminati, and S. De Siena, Phys. Rev. A 68, 062318/1 (2003).Google Scholar
  29. 29.
    29. S. Bose and V. Vedral, Phys. Rev. A 61, 040101/1 (2000).Google Scholar
  30. 30.
    30. A. Ekert and P. L. Knight, Am. J. Phys. 63, 415 (1995).Google Scholar
  31. 31.
    31. W. Dur, G. Vidal, and J. I. Cirac, Phys. Rev. A 62, 062314/1 (2000).Google Scholar
  32. 32.
    32. P. Rungta, V. Buzek, C. M. Caves, H. Hillery, and G. J. Milburn, Phys. Rev. A 64, 042315/1 (2001).Google Scholar
  33. 33.
    33. M. Lewenstein and A. Sanpera, Phys. Rev. Lett. 80, 2261 (1998).Google Scholar
  34. 34.
    34. R. F. Werner, Phys. Rev. A 40, 4277 (1989).CrossRefGoogle Scholar
  35. 35.
    35. A. Peres, Phys. Rev. Lett. 77, 1413 (1996).CrossRefMathSciNetzbMATHGoogle Scholar
  36. 36.
    36. C. E. Shannon and W. Weaver, The Mathematical Theory of Communication (The University of Illinois Press, Urbana, 1962).Google Scholar
  37. 37.
    37. E. T. Jaynes, “Probability in quantum theory,” Workshop on Complexity, Entropy, and the Physics of Information (1989).Google Scholar
  38. 38.
    38. G. M. D’Ariano, Fortschr. Phys. 51, 318 (2003).Google Scholar
  39. 39.
    39. C. M. Caves, C. A. Fuchs, and R. Schack, Phys. Rev. A 65, 022305/1 (2002).Google Scholar
  40. 40.
    40. J. von Neumann, “Measurement and reversibility and the measuring process,” in Quantum Theory and Measurement, edited by J. A. Wheeler and W. H. Zurek (Princeton University Press, Princeton, 1983).Google Scholar
  41. 41.
    41. R. Landauer, Phys. Today 44, 23 (1991).Google Scholar
  42. 42.
    42. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of New MexicoAlbuquerque

Personalised recommendations