Foundations of Physics Letters

, Volume 18, Issue 1, pp 85–93 | Cite as

Colored Flux Tube in Euclidean Spacetime


No Heading

The flux tube solution in the Euclidean spacetime with the color longitudinal electric field in the SU(2) Yang-Mills-Higgs theory with broken gauge symmetry is found. Some arguments are given that this flux tube is a pure quantum object in the SU(3) quantum theory reduced to the SU(2) Yang-Mills-Higgs theory.

Key words:

flux tube broken gange symmetry nonperturbative quantization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    1. H. B. Nielsen and P. Olesen, “Vortex line models for dual strings,” Nucl. Phys. B 61, 45 (1973).ADSCrossRefGoogle Scholar
  2. 2.
    2. V. Dzhunushaliev, “Flux tube dressed with color electric Eρ,ϕa and magnetic Hρ,ϕa fields,” hep-ph/0306203; “Electric/magnetic flux tube on the background of magnetic/electric field,” Ann. Phys. (Leipzig) 13 (5), 243 (2004).Google Scholar
  3. 3.
    3. V. Dzhunushaliev and D. Singleton, “Ginzburg-Landau equation from SU(2) gauge field theory,” Mod. Phys. Lett. A 18, 955 (2003); “Effective ‘t Hooft-Polyakov monopoles from pure SU(3) gauge theory,” Mod. Phys. Lett. A 18, 2873 (2003).ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    4. S. Coleman and E. Weinberg, “Radiative corrections as the origin of spontaneous symmetry breaking,” Phys. Rev. D 7, 1888 (1973).ADSCrossRefGoogle Scholar
  5. 5.
    5. W. Heisenberg, Introduction to the Unified Field Theory of Elementary Particles (Max-Planck-Institut für Physik und Astrophysik, Interscience, New York, 1966); “Zur Quantentheorie nichtrenormierbarer Wellengleichungen,” Z. Naturforsch. 9a, 292 (1954); “Erweiterungen des Hilbert-Raums in der Quantentheorie der Wellenfelder,” Z. Phys. 144, 1 (1956); “Lee model and quantization of nonlinear field equations,” Nucl. Phys. 4, 532 (1957); “Quantum theory of fields and elementary particles,” Rev. Mod. Phys. 29, 269 (1957). W. Heisenberg, F. Kortel, and H. Mütter, “Zur Quantentheorie nichtlinear Wellengleichungen III,” Z. naturforsch. 10a, 425 (1955). P. Askali and W. Heisenberg, “Zur Quantentheorie nichtlinear Wellengleichungen. IV Elektrodynamik,” Z. Naturforsch. 12a, 177 (1957).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Institut für MathematikUniversität PotsdamPotsdamGermany
  2. 2.Department of Physics and Microelectric EngineeringKyrgyz-Russian Slavic UniversityBishkekKyrgyz Republic

Personalised recommendations