Advertisement

Foundations of Physics Letters

, Volume 18, Issue 7, pp 603–619 | Cite as

The Principle of Equivalence and the Twin Paradox

  • S. K. Ghosal*
  • Saroj Nepal
  • Debarchana Das
Original Paper
  • 65 Downloads

No Heading

The canonical twin paradox is explained by making a correct use of the principle of equivalence. The role of the principle of equivalence is to provide a physical agent i.e gravity which can supply the required extra aging to the rocket-bound sibling during its acceleration phase through a gravitational time-offset effect. We follow an approach where a novel variation on the twin paradox is used to connect gravity with the desynchronization in the clocks of two spatially distant, identically accelerated observers. It is shown that this approach removes certain drawbacks of an earlier effort which claims to exploit the equivalence principle in explaining the differential aging in the paradox.

Key words:

special relativity general relativity twin paradox equivalence principle gravitational slowing down of clocks conventionality of simultaneity Zahar transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. A. Einstein, The Meaning of Relativity, 5th edn (Princeton University Press, NJ, 1955).Google Scholar
  2. 2.
    2. C. M. Will, “The renaissance of general relativity,” in Paul Daveis, ed. The New Physics (Cambridge University Press, Cambridge, 2000).Google Scholar
  3. 3.
    3. R. V. Pound and G. A. Rebka, Phys. Rev. Lett. 4, 337–341 (1960).ADSGoogle Scholar
  4. 4.
    4. R. V. Pound and J. L. Snider, Phys. Rev. B 140, 788–803 (1965).ADSGoogle Scholar
  5. 5.
    5. A. Harpaz, Eur. J. Phys. 11, 82–87 (1990).CrossRefGoogle Scholar
  6. 6.
    6. M. Redhead and T. A. Debs, Am. J. Phys. 64(4), 384–392 (1996).ADSMathSciNetGoogle Scholar
  7. 7.
    7. P. Pesic, Euro. J. Phys. 24, 585–589 (2003).MATHMathSciNetGoogle Scholar
  8. 8.
    8. Special Relativity Theory–Selected Reprints (American Institute of Physics, New York, 1959).Google Scholar
  9. 9.
    9. R. H. Romer, Am. J. Phys. 27, 131–135 (1959).MathSciNetGoogle Scholar
  10. 10.
    10. D. Bohm, The Special Theory Of Relativity (Benjamin, New York, 1965).Google Scholar
  11. 11.
    11. E. A. Desloge and R. J. Philpott, Am. J. Phys. 55, 252–261 (1987).CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    12. R. P. Gruber and R. H. Price, Am. J. Phys. 65(10), 979–980 (1997).CrossRefADSGoogle Scholar
  13. 13.
    13. T. Dray, Am. J. Phys. 58(9), 822–825 (1990).CrossRefADSGoogle Scholar
  14. 14.
    14. C. H. Brans and D. R. Stewart, Phys. Rev. D 8(6), 1662–1666 (1973).CrossRefADSGoogle Scholar
  15. 15.
    15. H. Bondi, “The space traveller's youth,” in Special Theory Of Relativity–Selected Reprints. (American institute of Physics, New York, 1963).Google Scholar
  16. 16.
    16. W. Rindler, Essential Relativity 2nd edn. (Spinger, New York, 1977).Google Scholar
  17. 17.
    17. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973).Google Scholar
  18. 18.
    18. C. Kacser, Introduction to The Special Theory Of Relativity (Prentice-Hall, New Jersy, 1967).Google Scholar
  19. 19.
    19. S. P. Boughn, Am. J. Phys. 57(9), 791–793 (1989).CrossRefADSGoogle Scholar
  20. 20.
    20. E. A. Desloge and R. J. Philpott, Am. J. Phys. 59, 280–281 (1991).CrossRefADSGoogle Scholar
  21. 21.
    21. R. H. Price and R. P. Gruber, Am. J. Phys. 64(8), 1006–1008 (1996).CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    22. R. H. Barron and P. Mazur, Am. J. Phys. 44(12), 1200–1203 (1976).CrossRefADSGoogle Scholar
  23. 23.
    23. E. Zahar, Brit. J. Phil. Sci. 28, 195–213 (1977).Google Scholar
  24. 24.
    24. S. K. Ghosal, D. Mukhopadhyay, and Papia Chakraborty, Eur. J. Phys. 15, 21–28 (1994).CrossRefGoogle Scholar
  25. 25.
    25. S. K. Ghosal, K. K. Nandi, and P. Chakraborty, Z. Naturforsch 46a, 256–258 (1991).Google Scholar
  26. 26.
    26. T. Sjödin, Nuovo Cimento B 51, 229–245 (1979).ADSGoogle Scholar
  27. 27.
    27. S. K. Ghosal, Biplab Raychaudhuri, Anjan Kumar Chowdhury, and Minakshi Sarker, Found. Phys. 33(6), 981–1001 (2003).CrossRefMathSciNetGoogle Scholar
  28. 28.
    28. S. K. Ghosal, Biplab Raychaudhuri, Anjan Kumar Chowdhury, and Minakshi Sarker, Found. Phys. Lett. 17(5), 457–478 (2004).CrossRefMathSciNetGoogle Scholar
  29. 29.
    29. R. Perrin, Am. J. Phys. 47(4), 317–319 (1979).CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    30. B. F. Schutz, A First Course In General Relativity (Cambridge University Press, Cambridge, 1985).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of PhysicsNorth Bengal UniversityDist. Darjeeling(WB)India

Personalised recommendations