Foundations of Physics Letters

, Volume 17, Issue 7, pp 645–661 | Cite as

Analytic Results for Gaussian Wave Packets in Four Model Systems: II. Autocorrelation Functions

  • R. W. Robinett
  • L. C. Bassett

The autocorrelation function, A(t), measures the overlap (in Hilbert space) of a time-dependent quantum mechanical wave function, ψ(x, t), with its initial value, ψ(x, 0). It finds extensive use in the theoretical analysis and experimental measurement of such phenomena as quantum wave packet revivals. We evaluate explicit expressions for the autocorrelation function for time-dependent Gaussian solutions of the Schrödinger equation corresponding to the cases of a free particle, a particle undergoing uniform acceleration, a particle in a harmonic oscillator potential, and a system corresponding to an unstable equilibrium (the so-called ‘inverted’ oscillator.) We emphasize the importance of momentum-space methods where such calculations are often more straightforwardly realized, as well as stressing their role in providing complementary information to results obtained using position-space wavefunctions.

Key words:

wave packets time-development autocorrelation Gaussian 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    1. M. Nauenberg, “Autocorrelation function and quantum recurrence of wave packets,” J. Phys. B. At. Mol. Opt. Phys. 23, L385–L390 (1990).Google Scholar
  2. 2.
    2. G. Alber, H. Ritsch, and P. Zoller, “Generation and detection of Rydberg wave packets by short laser pulses,” Phys. Rev. A 34, 1058–1064 (1986).Google Scholar
  3. 3.
    3. C. R. Stroud and J. A. Yeazell, “Observation of spatially localized atomic electronic wave-packets,” Phys. Rev. Lett. 60, 1494–1497 (1988).Google Scholar
  4. 4.
    4. R. W. Robinett, “Quantum wave packet revivals,” Phys. Rep. 392, 1–119 (2004); e-print arXiv: quant-ph/040131.Google Scholar
  5. 5.
    5. I. Sh. Averbukh and N. F. Perelman, “Fractional revivals: Universality in the long-term evolution of quantum wave packets beyond the correspondence principle dynamics,” Phys. Lett. A 139, 449–453 (1989); “Fractional revivals of wave packets,” Acta Phys. Pol. 78, 33–40 (1990). This paper includes much of the material in the citation above, correcting some minor typographical errors; “Fractional regenerations of wave-packets in the course of long-term evolution of highly excited quantum-systems,” Zh. Eksp. Teor. Fiziki. 96, 818–827 (1989) (Sov. Phys. JETP 69, 464–469 (1989).)CrossRefGoogle Scholar
  6. 6.
    6. J. A. Yeazell, M. Mallalieu, and C. R. Stroud Jr., “Observation of the collapse and revival of a Rydberg electronic wave packet,” Phys. Rev. Lett. 64, 2007–2010 (1990).Google Scholar
  7. 7.
    7. D. R. Meacher, P. E. Meyler, I. G. Hughes, and P. Ewart, “Observation of the collapse and revival of a Rydberg wavepacket in atomic rubidium,” J. Phys. B. 24, L63–L69 (1991).Google Scholar
  8. 8.
    8. J. Wals, H. H. Fielding, J. F. Christian, L. C. Snoek, W. J. van der Zande, and H. B. van Linden van den Heuvell, “Observation of Rydberg wave packet dynamics in a Coulombic and magnetic field,” Phys. Rev. Lett. 72, 3783–3786 (1994).Google Scholar
  9. 9.
    9. P. Bocchieri and A. Loinger, “Quantum recurrence theorem,” Phys. Rev. 107, 337–338 (1957).Google Scholar
  10. 10.
    10. R. von Baltz, “Distance between quantum states and the motion of wave packets,” Eur. J. Phys. 11, 215–220 (1989).Google Scholar
  11. 11.
    11. C. U. Segre and J. D. Sullivan, “Bound-state wave packets,” Am. J. Phys. 44, 729–732 (1976).Google Scholar
  12. 12.
    12. F. Grolßmann, J. -M. Rost, and W. P. Schleich, “Spacetime structures in simple quantum systems,” J. Phys. A 30, L277–L283 (1997).Google Scholar
  13. 13.
    13. P. Stifter, W. E. Lamb Jr., and W. P. Schleich, “The particle in a box revisited,” in Frontiers of Quantum Optics and Laser Physics, Proceedings of the International Conference on Quantum Optics and Laser Physics, S. Y. Zhu, M. S. Zubairy, and M. O. Scully, eds. (Springer, Singapore; 1997), pp. 236–246.Google Scholar
  14. 14.
    14. D. L. Aronstein and C. R. Stroud Jr., “Fractional wave-function revivals in the infinite square well,” Phys. Rev. A 55, 4526–4537 (1997).Google Scholar
  15. 15.
    15. R. W. Robinett, “Visualizing the collapse and revival of wave packets in the infinite square well using expectation values,” Am. J. Phys. 68, 410–420 (2000).Google Scholar
  16. 16.
    16. D. F. Styer, “Quantum revivals versus classical periodicity in the infinite square well,” Am. J. Phys. 69, 56–62 (2001).Google Scholar
  17. 17.
    17. K. Razi Naqvi, S. Waldenstrøm, and H. Haji Hassan, “Fractional revival of wave packets in an infinite square well: a Fourier perspective,” Eur. J. Phys. 22, 395–402 (2001).Google Scholar
  18. 18.
    18. W. Y. Chen and G. J. Milburn, “Fractional quantum revivals in the atomic gravitational cavity,” Phys. Rev. A 51, 2328–2333 (1995).Google Scholar
  19. 19.
    19. J. Gea-Banacloche, “A quantum bouncing ball,” Am. J. Phys. 67, 776–782 (1999).Google Scholar
  20. 20.
    20. O. Vallée, Comment on Ref. [19], Am. J. Phys. 68, 672–673 (2000).Google Scholar
  21. 21.
    21. M. A. Doncheski and R. W. Robinett, “Expectation value analysis of wave packet solutions for the quantum bouncer: Short-term classical and long-term revival behaviors,” Am. J. Phys. 69, 1084–1090 (2001).Google Scholar
  22. 22.
    22. K. Unnikrishnan, “An exhaustive analysis of the asymptotic time dependence of wave packets in one dimension,” Am. J. Phys. 66, 632–633 (1998).Google Scholar
  23. 23.
    23. K. Unnikrishnan, “On the asymptotic decay of wave packets in free space,” Am. J. Phys. 65, 526–527 (1997).Google Scholar
  24. 24.
    24. J. A. Damborenea, I. L. Egusquiza, and J. G. Muga, “Asymptotic behavior of the probability density in one dimension,” Am. J. Phys. 70, 738–740 (2002).Google Scholar
  25. 25.
    25. L. Vaidman, “Minimum time for the evolution to an orthogonal quantum state,” Am. J. Phys. 60, 182–183 (1992).Google Scholar
  26. 26.
    26. J. Uffink, “The rate of evolution of a quantum state,” Am. J. Phys. 61, 935–936 (1993).Google Scholar
  27. 27.
    27. L. Mandelstam and I. Tamm, “The uncertainty relation between energy and time in nonrelativistic quantum mechanics,” J. Phys. (USSR) 9, 249–254 (1945).Google Scholar
  28. 28.
    28. G. N. Fleming, “A unitary bound on the evolution of nonstationary states,” Nuovo Cimento A 16, 232–240 (1973).Google Scholar
  29. 29.
    29. K. Bhattacharyya, “Quantum decay and the Mandelstam-Tamm time-energy inequality,” J. Phys. A: Math. Gen 16, 2993–2996 (1983).Google Scholar
  30. 30.
    30. R. W. Robinett and L. Bassett, “Analytic results for Gaussian wave packets in four model systems: I. Visualizing the kinetic energy,” to appear in Found. Phys.Google Scholar
  31. 31.
    31. D. F. Styer, “The motion of wave packets through their expectation values and uncertainties,” Am. J. Phys. 58, 742–744 (1989).Google Scholar
  32. 32.
    32. R. W. Robinett, Quantum Mechanics: Classical Results, Modern Systems, and Visualized Examples (Oxford University Press, New York, 1997), pp. 206–208.Google Scholar
  33. 33.
    33. E. M. Wright, D. F. Walls, and J. C. Garrison, “Collapses and revivals of Bose-Einstein condensates formed in small atomic samples,” Phys. Rev. Lett. 77, 2158–2161 (1996).Google Scholar
  34. 34.
    34. M. Greiner, O. Mandel, T. W. Hänsch, and I. Bloch, “Collapse and revival of the matter wave field of a Bose-Einstein condensate,” Nature 419, 51–54 (2002).Google Scholar
  35. 35.
    35. D. Saxon, Elementary Quantum Mechanics (McGraw-Hill, New York, 1968), pp. 144–147.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • R. W. Robinett
    • 1
  • L. C. Bassett
    • 1
  1. 1.Department of PhysicsThe Pennsylvania State UniversityUniversity Park

Personalised recommendations