On the Possibility to Observe Relations Between Quantum Measurements and the Entropy of Phase Transitions in Zn2(BDC)2(DABCO)


The work interprets experimental data for the heat capacity of Zn2(BDC)2(DABCO) in the region of second-order phase transitions. The proposed understanding of the processes occurring during phase transitions may be helpful to reveal quantum Zeno effects in metal–organic frameworks (MOFs) with evolving (unstable) structural subsystems and to establish relations between quantum measurements and the entropy of phase transitions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Teuscher, C. (ed.): Alan Turing: Life and Legacy of a Great Thinker. Springer, Berlin (2004)

    Google Scholar 

  2. 2.

    Khalfin, L.A.: Zeno’s quantum effect. Sov. Phys. Usp. 33, 868 (1990). https://doi.org/10.1070/PU1990v033n10ABEH002639

    ADS  Article  Google Scholar 

  3. 3.

    Misra, B., Suddarshan, E.C.G.: The Zeno’s paradox in quantum theory. J. Math. Phys. 18, 756 (1977). https://doi.org/10.1063/1.523304

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Itano, W.M., Heinzen, D.J., Bollinger, J.J., Wineland, D.J.: Quantum zeno effect. Phys. Rev. A 41, 2295 (1990). https://doi.org/10.1103/PhysRevA.41.2295

    ADS  Article  Google Scholar 

  5. 5.

    Nakazato, H., Namiki, M., Pasazio, S., Rauch, H.: Understanding the quantum zeno effect. Phys. Lett. A 217, 203 (1996). https://doi.org/10.1016/0375-9601(96)00350-7

    ADS  Article  Google Scholar 

  6. 6.

    Home, D., Whitaker, M.A.B.: A conceptual analysis of quantum zeno; paradox, measurement, and experiment. Ann. Phys. (N.Y.) 258, 237 (1997). https://doi.org/10.1006/aphy.1997.5699

    ADS  MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Koshino, K., Shimizu, A.: Quantum zeno effect for exponentially decaying systems. Phys. Rev. Lett. 92, 030401 (2004). https://doi.org/10.1103/PhysRevLett.92.03040

    ADS  Article  Google Scholar 

  8. 8.

    Nagels, B., Hermans, L.J.F., Chapovsky, P.L.: Quantum zeno effect Induced by collisions. Phys. Rev. Lett. 79, 3097 (1997). https://doi.org/10.1103/PhysRevLett.79.3097

    ADS  Article  Google Scholar 

  9. 9.

    Balzer, C., Huesmann, R., Neuhauser, W., Toschek, P.E.: The quantum zeno effect—evolution of an atom impeded by measurement. Opt. Commun. 180, 115 (2000). https://doi.org/10.1016/S0030-4018(00)00716-1

    ADS  Article  Google Scholar 

  10. 10.

    Patil, Y.S., Chakram, S., Vengalattore, M.: Measurement-induced localization of an ultracold lattice gas. Phys. Rev. Lett. 115, 140402 (2015). https://doi.org/10.1103/PhysRevLett.115.140402

    ADS  Article  Google Scholar 

  11. 11.

    Streed, E.W., Mun, J., Boyd, M., Campbell, G.K., Medley, P., Ketterle, W., Pritchard, D.E.: Continuous and pulsed quantum zeno effect. Phys. Rev. Lett. 97, 260402 (2006). https://doi.org/10.1103/PhysRevLett.97.260402

    ADS  Article  Google Scholar 

  12. 12.

    Huang, Y.P., Moore, M.G.: Interaction- and measurement-free quantum zeno gates for universal computation with single-atom and single-photon qubits. Phys. Rev. A 77, 062332 (2008). https://doi.org/10.1103/PhysRevA.77.062332

    ADS  Article  Google Scholar 

  13. 13.

    Franson, J.D., Jacobs, B.C., Pittman, T.B.: Quantum computing using single photons and the Zeno effect. Phys. Rev. A 70, 062302 (2004). https://doi.org/10.1103/PhysRevA.70.062302

    ADS  Article  Google Scholar 

  14. 14.

    Maniscalco, S., Francica, F., Zaffino, R.L., Gullo, N.L., Plastina, F.: Protecting entanglement via the quantum zeno effect. Phys. Rev. Lett. 100, 090503 (2008). https://doi.org/10.1103/PhysRevLett.100.090503

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Cao, Y., Li, Y.-H., Cao, Z., Yin, J., Chen, Y.-A., Yin, H.-L., Chen, T.-Y., Ma, X., Peng, C.-Z., Pan, J.-W.: Direct counterfactual communication via quantum zeno effect. Proc. Natl. Acad. Sci. USA 114, 4920 (2017). https://doi.org/10.1073/pnas.1614560114

    ADS  Article  Google Scholar 

  16. 16.

    Hosten, O., Rakher, M., Barreiro, J., Peters, N.A., Kwiat, P.G.: Counterfactual quantum computation through quantum interrogation. Nature (London) 439, 949 (2006). https://doi.org/10.1038/nature04523

    ADS  Article  Google Scholar 

  17. 17.

    Kaulakys, B., Gontis, V.: Quantum anti-Zeno effect. Phys. Rev. A 56, 1131 (1997). https://doi.org/10.1103/PhysRevA.56.1131

    ADS  Article  Google Scholar 

  18. 18.

    Kofman, A.G., Kurizki, G.: Acceleration of quantum decay processes by frequent observations. Nature (London) 405, 546 (2000). https://doi.org/10.1038/35014537

    ADS  Article  Google Scholar 

  19. 19.

    Zhang, J.-M., Jing, J., Wang, L.-G., Zhu, S.-Y.: Criterion for quantum zeno and anti-zeno effects. Phys. Rev. A 98, 012135 (2018). https://doi.org/10.1103/PhysRevA.98.012135

    ADS  Article  Google Scholar 

  20. 20.

    Chen, P.-W., Tsai, D.-B., Bennett, P.: Quantum zeno and anti-zeno effect of a nanomechanical resonator measured by a point contact. Phys. Rev. B 81, 115307 (2010). https://doi.org/10.1103/PhysRevB.81.115307

    ADS  Article  Google Scholar 

  21. 21.

    Barone, A., Kurizki, G., Kofman, A.G.: Dynamical control of macroscopic quantum tunneling. Phys. Rev. Lett. 92, 200403 (2004). https://doi.org/10.1103/PhysRevLett.92.200403

    ADS  Article  Google Scholar 

  22. 22.

    Fujii, K., Yamamoto, K.: Anti-Zeno effect for quantum transport in disordered systems. Phys. Rev. A 82, 042109 (2010). https://doi.org/10.1103/PhysRevA.82.042109

    ADS  Article  Google Scholar 

  23. 23.

    Fischer, M.C., Gutiйrrez-Medina, B., Raizen, M.G.: Observation of the quantum zeno and anti-zeno effects in an unstable system. Phys. Rev. Lett. 87, 040402 (2001). https://doi.org/10.1103/PhysRevLett.87.040402

    ADS  Article  Google Scholar 

  24. 24.

    Maniscalco, S., Piilo, J., Suominen, K.-A.: Zeno and anti-zeno effects for quantum brownian motion. Phys. Rev. Lett. 97, 130402 (2006). https://doi.org/10.1103/PhysRevLett.97.130402

    ADS  Article  MATH  Google Scholar 

  25. 25.

    Chaudhry, A.Z.: A general framework for the quantum zeno and anti-zeno effects. Sci. Rep. 6, 29497 (2016). https://doi.org/10.1038/srep29497

    ADS  Article  Google Scholar 

  26. 26.

    Chaudhry, A.Z.: The quantum zeno and anti-zeno effects with strong system-environment coupling. Sci. Rep. 7, 1741 (2017). https://doi.org/10.1038/s41598-017-01844-8

    ADS  Article  Google Scholar 

  27. 27.

    He, S., Chen, Q.-H., Zheng, H.: Zeno and anti-zeno effect in an open quantum system in the ultrastrong-coupling regime. Phys. Rev. A 95, 062109 (2017). https://doi.org/10.1103/PhysRevA.95.062109

    ADS  Article  Google Scholar 

  28. 28.

    Zhou, Z., Lu, Z., Zheng, H., Goan, H.S.: Quantum zeno and anti-zeno effects in open quantum systems. Phys. Rev. A 96, 032101 (2017). https://doi.org/10.1103/PhysRevA.96.032101

    ADS  MathSciNet  Article  Google Scholar 

  29. 29.

    Zhang, Y.-R., Fan, H.: Zeno dynamics in quantum open systems. Sci. Rep. 5, 11509 (2015). https://doi.org/10.1038/srep11509

    ADS  Article  Google Scholar 

  30. 30.

    Facchi, P., Nakazato, H., Pascazio, S.: From the quantum zeno to the inverse quantum zeno effect. Phys. Rev. Lett. 86, 2699 (2001). https://doi.org/10.1103/PhysRevLett.86.2699

    ADS  Article  Google Scholar 

  31. 31.

    Koshino, K., Shimizu, A.: Quantum zeno effect by general measurements. Phys. Rep. 412, 191 (2005). https://doi.org/10.1016/j.physrep.2005.03.001

    ADS  MathSciNet  Article  Google Scholar 

  32. 32.

    Facchi, P., Pascazio, S.: Quantum zeno dynamics: mathematical and physical aspects. J. Phys. A 41, 493001 (2008). https://doi.org/10.1088/1751-8113/41/49/493001

    MathSciNet  Article  MATH  Google Scholar 

  33. 33.

    Wuster, S.: Quantum zeno suppression of intramolecular forces. Phys. Rev. Lett. 119, 013001 (2017). https://doi.org/10.1103/PhysRevLett.119.013001

    ADS  Article  Google Scholar 

  34. 34.

    Rebentrost, P., Mohseni, M., Kassal, I., Lloyd, S., Aspuru-Guzik, A.: Environment-assisted quantum transport. New J. Phys. 11, 033003 (2009). https://doi.org/10.1088/1367-2630/11/3/033003

    ADS  Article  Google Scholar 

  35. 35.

    Erez, N., Gordon, G., Nest, M., Kurizki, G.: Thermodynamic control by frequent quantum measurements. Nature (London). 452, 724 (2008). https://doi.org/10.1038/nature06873

    ADS  Article  Google Scholar 

  36. 36.

    Zheng, H., Zhu, S.Y., Zubairy, M.S.: Quantum zeno and anti-zeno effects: without the rotating-wave approximation. Phys. Rev. Lett. 101, 200404 (2008). https://doi.org/10.1103/PhysRevLett.101.200404

    ADS  Article  Google Scholar 

  37. 37.

    Wang, D.-W., Wang, L.-G., Li, Z.-H., Zhu, S.Y.: Anti-Zeno-effect recovery and Lamb-shift modification in modified vacuum. Phys. Rev. A 80, 042101 (2009). https://doi.org/10.1103/PhysRevA.80.042101

    ADS  Article  Google Scholar 

  38. 38.

    Li, Z.-H., Wang, D.-W., Zheng, H., Zhu, S.-Y., Zubairy, M.S.: Effect of the counterrotating-wave terms on the spontaneous emission from a multilevel atom. Phys. Rev. A 80, 023801 (2009). https://doi.org/10.1103/PhysRevA.80.023801

    ADS  Article  Google Scholar 

  39. 39.

    Cao, X., You, J.Q., Zheng, H., Kofman, A.G., Franco, N.: Dynamics and quantum zeno effect for a qubit in either a low- or high-frequency bath beyond the rotating-wave approximation. Phys. Rev. A 82, 022119 (2010). https://doi.org/10.1103/PhysRevA.82.022119

    ADS  Article  Google Scholar 

  40. 40.

    Ai, Q., Li, Y., Zheng, H., Sun, C.P.: Quantum anti-zeno effect without rotating wave approximation. Phys. Rev. A 81, 042116 (2010). https://doi.org/10.1103/PhysRevA.81.042116

    ADS  Article  Google Scholar 

  41. 41.

    Bosco de Magalhгes, A.R., Rossi, R., Nemes, M.C.: Environment induced quantum zeno effect in coupled microwave cavities. Phys. Lett. A 375, 1724 (2011). https://doi.org/10.1016/j.physleta.2011.03.017

    ADS  Article  MATH  Google Scholar 

  42. 42.

    Harris, R.A., Stodolsky, L.: On the time dependence of optical activity. J. Chem. Phys. 74, 2145 (1981). https://doi.org/10.1063/1.441373

    ADS  Article  Google Scholar 

  43. 43.

    Harris, R.A., Stodolsky, L.: Two state systems in media and “Turing’s paradox.” Phys. Lett. B 116, 464 (1982). https://doi.org/10.1016/0370-2693(82)90169-1

    ADS  Article  Google Scholar 

  44. 44.

    Bernu, J.: Freezing coherent field growth in a cavity by the quantum zeno effect. Phys. Rev. Lett. 101, 180402 (2008). https://doi.org/10.1103/PhysRevLett.101.180402

    ADS  Article  Google Scholar 

  45. 45.

    Oliveira, L.F.L., Rossi, R., de Magalhães, A.R.B., de Faria, J.G.P., Nemes, M.C.: Continuous monitoring of dynamical systems and master equations. Phys. Lett. A 376, 1786 (2012). https://doi.org/10.1016/j.physleta.2012.04.017

    ADS  Article  MATH  Google Scholar 

  46. 46.

    Gordon, G., Erez, N., Kurizki, G.: Control of temperature and entropy by frequent quantum measurements. Optic Spectrosc. 108, 400 (2010). https://doi.org/10.1134/S0030400X10030136

    ADS  Article  Google Scholar 

  47. 47.

    Chaudhry, A.Z., Gong, J.: Zeno and anti-zeno effects on dephasing. Phys. Rev. A 90, 012101 (2014). https://doi.org/10.1103/PhysRevA.90.012101

    ADS  Article  Google Scholar 

  48. 48.

    Gelbwaser-Klimovsky, D., Niedenzu, W., Kurizki, G.: Chapter Twelve - Thermodynamics of Quantum Systems Under Dynamical Control. In: Arimondo, E., Lin, C., Yelin, S. (eds.) Advances in Atomic, Molecular, and Optical Physics, vol. 64. Elsevier Inc (2015). https://doi.org/10.1016/bs.aamop.2015.07.002

  49. 49.

    Dybtsev, D.N., Chun, H., Kim, K.: Rigid and flexible: a highly porous metal–organic framework with unusual guest-dependent dynamic behavior. Angew. Chem. Int. Ed. 43, 5033 (2004). https://doi.org/10.1002/anie.200460712

    Article  Google Scholar 

  50. 50.

    Kim, Y., Haldar, R., Kim, H., Koo, J., Kim, K.: The guest-dependent thermal response of the flexible MOF Zn2(BDC)2(DABCO). Dalton Trans. 45, 4187 (2016). https://doi.org/10.1039/C5DT03710G

    Article  Google Scholar 

  51. 51.

    Gabuda, S.P., Kozlova, S.G., Samsonenko, D.P., Dybtsev, D.N., Fedin, V.P.: Quantum rotations and chiral polarization of qubit prototype molecules in a highly porous metal–organic framework: 1H NMR T1 study. J. Phys. Chem. C 115, 20460 (2011). https://doi.org/10.1021/jp206725k

    Article  Google Scholar 

  52. 52.

    Sabylinskii, A.V., Gabuda, S.P., Kozlova, S.G., Dybtsev, D.N., Fedin, V.P.: 1NMR refinement of the structure of the guest sublattice and molecular dynamics in the ultrathin channels of [Zn2(C8H4O4)2(C6H12N2)]n(H3C)2NCHO”. J. Struct. Chem. 50, 421 (2009). https://doi.org/10.1007/s10947-009-0063-6

    Article  Google Scholar 

  53. 53.

    Khudozhitkov, A.E., Kolokolov, D.I., Stepanov, A.G., Bolotov, V.A., Dybtsev, D.N.: Metal-cation-independent dynamics of phenylene ring in microporous MOFs: a 2H solid-state NMR study. J. Phys. Chem. C 119, 28038 (2015). https://doi.org/10.1021/acs.jpcc.5b09435

    Article  Google Scholar 

  54. 54.

    Paukov, I.E., Samsonenko, D.P., Pishchur, D.P., Kozlova, S.G., Gabuda, S.P.: Phase transitions and unusual behavior of heat capacity in metal organic framework compound Zn2(C8H4O4)2 N2(CH2)6. J. Solid State Chem. 220, 254 (2014). https://doi.org/10.1016/j.jssc.2014.09.007

    ADS  Article  Google Scholar 

  55. 55.

    Pishchur, D.P., Kompankov, N.B., Lysova, A.A., Kozlova, S.G.: Order-disorder phase transitions in Zn2(C8H4O4)2C6H12N2 in atmospheres of noble gases. J. Chem. Thermodyn. 130, 147 (2019). https://doi.org/10.1016/j.jct.2018.10.004

    Article  Google Scholar 

  56. 56.

    Gabuda, S.P., Kozlova, S.G.: Chirality-related interactions and a mirror symmetry violation in handed nano structures. J. Chem. Phys. 141, 044701 (2014). https://doi.org/10.1063/1.4890327

    ADS  Article  Google Scholar 

  57. 57.

    Gabuda, S.P., Kozlova, S.G.: Abnormal difference between the mobilities of left- and right-twisted conformations of C6H12N2 roto-symmetrical molecules at very low temperatures. J. Chem. Phys. 142, 234302 (2015). https://doi.org/10.1063/1.4922542

    ADS  Article  Google Scholar 

  58. 58.

    Kozlova, S.G., Mirzaeva, I.V., Ryzhikov, M.R.: DABCO molecule in the M2(C8H4O4)2C6H12N2 (M = Co, Ni, Cu, Zn) metal-organic frameworks. Coord. Chem. Rev. 376, 62 (2018). https://doi.org/10.1016/j.ccr.2018.07.008

    Article  Google Scholar 

  59. 59.

    Kozlova, S.G., Gabuda, S.P.: Thermal properties of Zn2(C8H4O4)2•C6H12N2 metal-organic framework compound and mirror symmetry violation of dabco molecules. Sci. Rep. 7, 11505 (2017). https://doi.org/10.1038/s41598-017-11326-6

    ADS  Article  Google Scholar 

  60. 60.

    Kozlova, S.G.: Behavior of the heat capacity at second-order phase transitionsin the [Zn2(C8H4O4)2·C6H12N2] metal-organic framework compound. JETP Lett. 104, 253 (2016). https://doi.org/10.1134/S0021364016160074

    ADS  Article  Google Scholar 

  61. 61.

    Kozlova, S., Ryzhikov, M., Pishchur, D., Mirzaeva, I.: Overview of low-temperature heat capacity data for Zn2(C8H4O4)2C6H12N2 and the salam hypothesis. Symmetry 11, 657 (2019). https://doi.org/10.3390/sym11050657

    Article  Google Scholar 

  62. 62.

    Nizovtsev, A.S., Ryzhikov, M.R., Kozlova, S.G.: Structural flexibility of DABCO. Ab initio and DFT benchmark study. Chem. Phys. Lett. 667, 87 (2017). https://doi.org/10.1016/j.cplett.2016.11.042

    ADS  Article  Google Scholar 

  63. 63.

    Mathivon, K., Linguerri, R., Hochlaf, M.: Systematic theoretical studies of the interaction of 1,4-diazabicyclo[2.2.2]octane (DABCO) with rare gases. J. Chem. Phys. 139, 164306 (2013). https://doi.org/10.1063/1.4826449

    ADS  Article  Google Scholar 

  64. 64.

    Hoffmann, H.C., Assfour, B., Epperlein, F., Klein, N., Paasch, S., Senkovska, I., Kaskel, S., Seifert, G., Brunner, E.: High-pressure in situ 129Xe NMR spectroscopy and computer simulations of breathing transitions in the metal organic framework Ni2(2,6-ndc)2(dabco) (DUT-8(Ni)). J. Am. Chem. Soc. 133, 8681 (2011). https://doi.org/10.1021/ja201951t

    Article  Google Scholar 

  65. 65.

    Glyde, H.R., Svensson, E.C.: Solid and liquid helium. Methods Exp. Phys. 23, 303 (1987). https://doi.org/10.1016/S0076-695X(08)60573-6

    ADS  Article  Google Scholar 

  66. 66.

    Zuluaga, S., Canepa, P., Tan, K., Chaba, Y.J., Thonhauser, T.: Study of van der Waals bonding and interactions in metal organic framework materials. J. Phys. 26, 133002 (2014). https://doi.org/10.1088/0953-8984/26/13/133002

    Article  Google Scholar 

  67. 67.

    Ryzhikov, M.R., Kozlova, S.G.: Interactions between building blocks of the Zn2(BDC)2DABCO metal-organic framework. J. Struct. Chem. 61, 161 (2020). https://doi.org/10.1134/S0022476620020018

    Article  Google Scholar 

  68. 68.

    Ryzhikov, M.R., Kozlova, S.G.: Understanding structural flexibility of the paddle-wheel Zn-SBU motif in MOFs: influence of pillar ligands. Phys. Chem. Chem. Phys. 21, 11977 (2019). https://doi.org/10.1039/c9cp02483b

    Article  Google Scholar 

Download references


Not applicable.

Author information




SGK, DPP have equal rights.

Corresponding author

Correspondence to Svetlana G. Kozlova.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kozlova, S.G., Pishchur, D.P. On the Possibility to Observe Relations Between Quantum Measurements and the Entropy of Phase Transitions in Zn2(BDC)2(DABCO). Found Phys 51, 8 (2021). https://doi.org/10.1007/s10701-021-00416-1

Download citation


  • Quantum Zeno effects
  • Quantum measurements
  • Phase transitions
  • Entropy