Abstract
The work interprets experimental data for the heat capacity of Zn2(BDC)2(DABCO) in the region of second-order phase transitions. The proposed understanding of the processes occurring during phase transitions may be helpful to reveal quantum Zeno effects in metal–organic frameworks (MOFs) with evolving (unstable) structural subsystems and to establish relations between quantum measurements and the entropy of phase transitions.
This is a preview of subscription content, access via your institution.


References
- 1.
Teuscher, C. (ed.): Alan Turing: Life and Legacy of a Great Thinker. Springer, Berlin (2004)
- 2.
Khalfin, L.A.: Zeno’s quantum effect. Sov. Phys. Usp. 33, 868 (1990). https://doi.org/10.1070/PU1990v033n10ABEH002639
- 3.
Misra, B., Suddarshan, E.C.G.: The Zeno’s paradox in quantum theory. J. Math. Phys. 18, 756 (1977). https://doi.org/10.1063/1.523304
- 4.
Itano, W.M., Heinzen, D.J., Bollinger, J.J., Wineland, D.J.: Quantum zeno effect. Phys. Rev. A 41, 2295 (1990). https://doi.org/10.1103/PhysRevA.41.2295
- 5.
Nakazato, H., Namiki, M., Pasazio, S., Rauch, H.: Understanding the quantum zeno effect. Phys. Lett. A 217, 203 (1996). https://doi.org/10.1016/0375-9601(96)00350-7
- 6.
Home, D., Whitaker, M.A.B.: A conceptual analysis of quantum zeno; paradox, measurement, and experiment. Ann. Phys. (N.Y.) 258, 237 (1997). https://doi.org/10.1006/aphy.1997.5699
- 7.
Koshino, K., Shimizu, A.: Quantum zeno effect for exponentially decaying systems. Phys. Rev. Lett. 92, 030401 (2004). https://doi.org/10.1103/PhysRevLett.92.03040
- 8.
Nagels, B., Hermans, L.J.F., Chapovsky, P.L.: Quantum zeno effect Induced by collisions. Phys. Rev. Lett. 79, 3097 (1997). https://doi.org/10.1103/PhysRevLett.79.3097
- 9.
Balzer, C., Huesmann, R., Neuhauser, W., Toschek, P.E.: The quantum zeno effect—evolution of an atom impeded by measurement. Opt. Commun. 180, 115 (2000). https://doi.org/10.1016/S0030-4018(00)00716-1
- 10.
Patil, Y.S., Chakram, S., Vengalattore, M.: Measurement-induced localization of an ultracold lattice gas. Phys. Rev. Lett. 115, 140402 (2015). https://doi.org/10.1103/PhysRevLett.115.140402
- 11.
Streed, E.W., Mun, J., Boyd, M., Campbell, G.K., Medley, P., Ketterle, W., Pritchard, D.E.: Continuous and pulsed quantum zeno effect. Phys. Rev. Lett. 97, 260402 (2006). https://doi.org/10.1103/PhysRevLett.97.260402
- 12.
Huang, Y.P., Moore, M.G.: Interaction- and measurement-free quantum zeno gates for universal computation with single-atom and single-photon qubits. Phys. Rev. A 77, 062332 (2008). https://doi.org/10.1103/PhysRevA.77.062332
- 13.
Franson, J.D., Jacobs, B.C., Pittman, T.B.: Quantum computing using single photons and the Zeno effect. Phys. Rev. A 70, 062302 (2004). https://doi.org/10.1103/PhysRevA.70.062302
- 14.
Maniscalco, S., Francica, F., Zaffino, R.L., Gullo, N.L., Plastina, F.: Protecting entanglement via the quantum zeno effect. Phys. Rev. Lett. 100, 090503 (2008). https://doi.org/10.1103/PhysRevLett.100.090503
- 15.
Cao, Y., Li, Y.-H., Cao, Z., Yin, J., Chen, Y.-A., Yin, H.-L., Chen, T.-Y., Ma, X., Peng, C.-Z., Pan, J.-W.: Direct counterfactual communication via quantum zeno effect. Proc. Natl. Acad. Sci. USA 114, 4920 (2017). https://doi.org/10.1073/pnas.1614560114
- 16.
Hosten, O., Rakher, M., Barreiro, J., Peters, N.A., Kwiat, P.G.: Counterfactual quantum computation through quantum interrogation. Nature (London) 439, 949 (2006). https://doi.org/10.1038/nature04523
- 17.
Kaulakys, B., Gontis, V.: Quantum anti-Zeno effect. Phys. Rev. A 56, 1131 (1997). https://doi.org/10.1103/PhysRevA.56.1131
- 18.
Kofman, A.G., Kurizki, G.: Acceleration of quantum decay processes by frequent observations. Nature (London) 405, 546 (2000). https://doi.org/10.1038/35014537
- 19.
Zhang, J.-M., Jing, J., Wang, L.-G., Zhu, S.-Y.: Criterion for quantum zeno and anti-zeno effects. Phys. Rev. A 98, 012135 (2018). https://doi.org/10.1103/PhysRevA.98.012135
- 20.
Chen, P.-W., Tsai, D.-B., Bennett, P.: Quantum zeno and anti-zeno effect of a nanomechanical resonator measured by a point contact. Phys. Rev. B 81, 115307 (2010). https://doi.org/10.1103/PhysRevB.81.115307
- 21.
Barone, A., Kurizki, G., Kofman, A.G.: Dynamical control of macroscopic quantum tunneling. Phys. Rev. Lett. 92, 200403 (2004). https://doi.org/10.1103/PhysRevLett.92.200403
- 22.
Fujii, K., Yamamoto, K.: Anti-Zeno effect for quantum transport in disordered systems. Phys. Rev. A 82, 042109 (2010). https://doi.org/10.1103/PhysRevA.82.042109
- 23.
Fischer, M.C., Gutiйrrez-Medina, B., Raizen, M.G.: Observation of the quantum zeno and anti-zeno effects in an unstable system. Phys. Rev. Lett. 87, 040402 (2001). https://doi.org/10.1103/PhysRevLett.87.040402
- 24.
Maniscalco, S., Piilo, J., Suominen, K.-A.: Zeno and anti-zeno effects for quantum brownian motion. Phys. Rev. Lett. 97, 130402 (2006). https://doi.org/10.1103/PhysRevLett.97.130402
- 25.
Chaudhry, A.Z.: A general framework for the quantum zeno and anti-zeno effects. Sci. Rep. 6, 29497 (2016). https://doi.org/10.1038/srep29497
- 26.
Chaudhry, A.Z.: The quantum zeno and anti-zeno effects with strong system-environment coupling. Sci. Rep. 7, 1741 (2017). https://doi.org/10.1038/s41598-017-01844-8
- 27.
He, S., Chen, Q.-H., Zheng, H.: Zeno and anti-zeno effect in an open quantum system in the ultrastrong-coupling regime. Phys. Rev. A 95, 062109 (2017). https://doi.org/10.1103/PhysRevA.95.062109
- 28.
Zhou, Z., Lu, Z., Zheng, H., Goan, H.S.: Quantum zeno and anti-zeno effects in open quantum systems. Phys. Rev. A 96, 032101 (2017). https://doi.org/10.1103/PhysRevA.96.032101
- 29.
Zhang, Y.-R., Fan, H.: Zeno dynamics in quantum open systems. Sci. Rep. 5, 11509 (2015). https://doi.org/10.1038/srep11509
- 30.
Facchi, P., Nakazato, H., Pascazio, S.: From the quantum zeno to the inverse quantum zeno effect. Phys. Rev. Lett. 86, 2699 (2001). https://doi.org/10.1103/PhysRevLett.86.2699
- 31.
Koshino, K., Shimizu, A.: Quantum zeno effect by general measurements. Phys. Rep. 412, 191 (2005). https://doi.org/10.1016/j.physrep.2005.03.001
- 32.
Facchi, P., Pascazio, S.: Quantum zeno dynamics: mathematical and physical aspects. J. Phys. A 41, 493001 (2008). https://doi.org/10.1088/1751-8113/41/49/493001
- 33.
Wuster, S.: Quantum zeno suppression of intramolecular forces. Phys. Rev. Lett. 119, 013001 (2017). https://doi.org/10.1103/PhysRevLett.119.013001
- 34.
Rebentrost, P., Mohseni, M., Kassal, I., Lloyd, S., Aspuru-Guzik, A.: Environment-assisted quantum transport. New J. Phys. 11, 033003 (2009). https://doi.org/10.1088/1367-2630/11/3/033003
- 35.
Erez, N., Gordon, G., Nest, M., Kurizki, G.: Thermodynamic control by frequent quantum measurements. Nature (London). 452, 724 (2008). https://doi.org/10.1038/nature06873
- 36.
Zheng, H., Zhu, S.Y., Zubairy, M.S.: Quantum zeno and anti-zeno effects: without the rotating-wave approximation. Phys. Rev. Lett. 101, 200404 (2008). https://doi.org/10.1103/PhysRevLett.101.200404
- 37.
Wang, D.-W., Wang, L.-G., Li, Z.-H., Zhu, S.Y.: Anti-Zeno-effect recovery and Lamb-shift modification in modified vacuum. Phys. Rev. A 80, 042101 (2009). https://doi.org/10.1103/PhysRevA.80.042101
- 38.
Li, Z.-H., Wang, D.-W., Zheng, H., Zhu, S.-Y., Zubairy, M.S.: Effect of the counterrotating-wave terms on the spontaneous emission from a multilevel atom. Phys. Rev. A 80, 023801 (2009). https://doi.org/10.1103/PhysRevA.80.023801
- 39.
Cao, X., You, J.Q., Zheng, H., Kofman, A.G., Franco, N.: Dynamics and quantum zeno effect for a qubit in either a low- or high-frequency bath beyond the rotating-wave approximation. Phys. Rev. A 82, 022119 (2010). https://doi.org/10.1103/PhysRevA.82.022119
- 40.
Ai, Q., Li, Y., Zheng, H., Sun, C.P.: Quantum anti-zeno effect without rotating wave approximation. Phys. Rev. A 81, 042116 (2010). https://doi.org/10.1103/PhysRevA.81.042116
- 41.
Bosco de Magalhгes, A.R., Rossi, R., Nemes, M.C.: Environment induced quantum zeno effect in coupled microwave cavities. Phys. Lett. A 375, 1724 (2011). https://doi.org/10.1016/j.physleta.2011.03.017
- 42.
Harris, R.A., Stodolsky, L.: On the time dependence of optical activity. J. Chem. Phys. 74, 2145 (1981). https://doi.org/10.1063/1.441373
- 43.
Harris, R.A., Stodolsky, L.: Two state systems in media and “Turing’s paradox.” Phys. Lett. B 116, 464 (1982). https://doi.org/10.1016/0370-2693(82)90169-1
- 44.
Bernu, J.: Freezing coherent field growth in a cavity by the quantum zeno effect. Phys. Rev. Lett. 101, 180402 (2008). https://doi.org/10.1103/PhysRevLett.101.180402
- 45.
Oliveira, L.F.L., Rossi, R., de Magalhães, A.R.B., de Faria, J.G.P., Nemes, M.C.: Continuous monitoring of dynamical systems and master equations. Phys. Lett. A 376, 1786 (2012). https://doi.org/10.1016/j.physleta.2012.04.017
- 46.
Gordon, G., Erez, N., Kurizki, G.: Control of temperature and entropy by frequent quantum measurements. Optic Spectrosc. 108, 400 (2010). https://doi.org/10.1134/S0030400X10030136
- 47.
Chaudhry, A.Z., Gong, J.: Zeno and anti-zeno effects on dephasing. Phys. Rev. A 90, 012101 (2014). https://doi.org/10.1103/PhysRevA.90.012101
- 48.
Gelbwaser-Klimovsky, D., Niedenzu, W., Kurizki, G.: Chapter Twelve - Thermodynamics of Quantum Systems Under Dynamical Control. In: Arimondo, E., Lin, C., Yelin, S. (eds.) Advances in Atomic, Molecular, and Optical Physics, vol. 64. Elsevier Inc (2015). https://doi.org/10.1016/bs.aamop.2015.07.002
- 49.
Dybtsev, D.N., Chun, H., Kim, K.: Rigid and flexible: a highly porous metal–organic framework with unusual guest-dependent dynamic behavior. Angew. Chem. Int. Ed. 43, 5033 (2004). https://doi.org/10.1002/anie.200460712
- 50.
Kim, Y., Haldar, R., Kim, H., Koo, J., Kim, K.: The guest-dependent thermal response of the flexible MOF Zn2(BDC)2(DABCO). Dalton Trans. 45, 4187 (2016). https://doi.org/10.1039/C5DT03710G
- 51.
Gabuda, S.P., Kozlova, S.G., Samsonenko, D.P., Dybtsev, D.N., Fedin, V.P.: Quantum rotations and chiral polarization of qubit prototype molecules in a highly porous metal–organic framework: 1H NMR T1 study. J. Phys. Chem. C 115, 20460 (2011). https://doi.org/10.1021/jp206725k
- 52.
Sabylinskii, A.V., Gabuda, S.P., Kozlova, S.G., Dybtsev, D.N., Fedin, V.P.: 1NMR refinement of the structure of the guest sublattice and molecular dynamics in the ultrathin channels of [Zn2(C8H4O4)2(C6H12N2)]n(H3C)2NCHO”. J. Struct. Chem. 50, 421 (2009). https://doi.org/10.1007/s10947-009-0063-6
- 53.
Khudozhitkov, A.E., Kolokolov, D.I., Stepanov, A.G., Bolotov, V.A., Dybtsev, D.N.: Metal-cation-independent dynamics of phenylene ring in microporous MOFs: a 2H solid-state NMR study. J. Phys. Chem. C 119, 28038 (2015). https://doi.org/10.1021/acs.jpcc.5b09435
- 54.
Paukov, I.E., Samsonenko, D.P., Pishchur, D.P., Kozlova, S.G., Gabuda, S.P.: Phase transitions and unusual behavior of heat capacity in metal organic framework compound Zn2(C8H4O4)2 N2(CH2)6. J. Solid State Chem. 220, 254 (2014). https://doi.org/10.1016/j.jssc.2014.09.007
- 55.
Pishchur, D.P., Kompankov, N.B., Lysova, A.A., Kozlova, S.G.: Order-disorder phase transitions in Zn2(C8H4O4)2C6H12N2 in atmospheres of noble gases. J. Chem. Thermodyn. 130, 147 (2019). https://doi.org/10.1016/j.jct.2018.10.004
- 56.
Gabuda, S.P., Kozlova, S.G.: Chirality-related interactions and a mirror symmetry violation in handed nano structures. J. Chem. Phys. 141, 044701 (2014). https://doi.org/10.1063/1.4890327
- 57.
Gabuda, S.P., Kozlova, S.G.: Abnormal difference between the mobilities of left- and right-twisted conformations of C6H12N2 roto-symmetrical molecules at very low temperatures. J. Chem. Phys. 142, 234302 (2015). https://doi.org/10.1063/1.4922542
- 58.
Kozlova, S.G., Mirzaeva, I.V., Ryzhikov, M.R.: DABCO molecule in the M2(C8H4O4)2C6H12N2 (M = Co, Ni, Cu, Zn) metal-organic frameworks. Coord. Chem. Rev. 376, 62 (2018). https://doi.org/10.1016/j.ccr.2018.07.008
- 59.
Kozlova, S.G., Gabuda, S.P.: Thermal properties of Zn2(C8H4O4)2•C6H12N2 metal-organic framework compound and mirror symmetry violation of dabco molecules. Sci. Rep. 7, 11505 (2017). https://doi.org/10.1038/s41598-017-11326-6
- 60.
Kozlova, S.G.: Behavior of the heat capacity at second-order phase transitionsin the [Zn2(C8H4O4)2·C6H12N2] metal-organic framework compound. JETP Lett. 104, 253 (2016). https://doi.org/10.1134/S0021364016160074
- 61.
Kozlova, S., Ryzhikov, M., Pishchur, D., Mirzaeva, I.: Overview of low-temperature heat capacity data for Zn2(C8H4O4)2C6H12N2 and the salam hypothesis. Symmetry 11, 657 (2019). https://doi.org/10.3390/sym11050657
- 62.
Nizovtsev, A.S., Ryzhikov, M.R., Kozlova, S.G.: Structural flexibility of DABCO. Ab initio and DFT benchmark study. Chem. Phys. Lett. 667, 87 (2017). https://doi.org/10.1016/j.cplett.2016.11.042
- 63.
Mathivon, K., Linguerri, R., Hochlaf, M.: Systematic theoretical studies of the interaction of 1,4-diazabicyclo[2.2.2]octane (DABCO) with rare gases. J. Chem. Phys. 139, 164306 (2013). https://doi.org/10.1063/1.4826449
- 64.
Hoffmann, H.C., Assfour, B., Epperlein, F., Klein, N., Paasch, S., Senkovska, I., Kaskel, S., Seifert, G., Brunner, E.: High-pressure in situ 129Xe NMR spectroscopy and computer simulations of breathing transitions in the metal organic framework Ni2(2,6-ndc)2(dabco) (DUT-8(Ni)). J. Am. Chem. Soc. 133, 8681 (2011). https://doi.org/10.1021/ja201951t
- 65.
Glyde, H.R., Svensson, E.C.: Solid and liquid helium. Methods Exp. Phys. 23, 303 (1987). https://doi.org/10.1016/S0076-695X(08)60573-6
- 66.
Zuluaga, S., Canepa, P., Tan, K., Chaba, Y.J., Thonhauser, T.: Study of van der Waals bonding and interactions in metal organic framework materials. J. Phys. 26, 133002 (2014). https://doi.org/10.1088/0953-8984/26/13/133002
- 67.
Ryzhikov, M.R., Kozlova, S.G.: Interactions between building blocks of the Zn2(BDC)2DABCO metal-organic framework. J. Struct. Chem. 61, 161 (2020). https://doi.org/10.1134/S0022476620020018
- 68.
Ryzhikov, M.R., Kozlova, S.G.: Understanding structural flexibility of the paddle-wheel Zn-SBU motif in MOFs: influence of pillar ligands. Phys. Chem. Chem. Phys. 21, 11977 (2019). https://doi.org/10.1039/c9cp02483b
Funding
Not applicable.
Author information
Affiliations
Contributions
SGK, DPP have equal rights.
Corresponding author
Ethics declarations
Conflict of interest
All authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kozlova, S.G., Pishchur, D.P. On the Possibility to Observe Relations Between Quantum Measurements and the Entropy of Phase Transitions in Zn2(BDC)2(DABCO). Found Phys 51, 8 (2021). https://doi.org/10.1007/s10701-021-00416-1
Received:
Accepted:
Published:
Keywords
- Quantum Zeno effects
- Quantum measurements
- Phase transitions
- Entropy