Gauge Invariance for Classical Massless Particles with Spin

Abstract

Wigner’s quantum-mechanical classification of particle-types in terms of irreducible representations of the Poincaré group has a classical analogue, which we extend in this paper. We study the compactness properties of the resulting phase spaces at fixed energy, and show that in order for a classical massless particle to be physically sensible, its phase space must feature a classical-particle counterpart of electromagnetic gauge invariance. By examining the connection between massless and massive particles in the massless limit, we also derive a classical-particle version of the Higgs mechanism.

This is a preview of subscription content, access via your institution.

Notes

  1. 1.

    For a more comprehensive treatment of the results in this paper, see [3].

  2. 2.

    For an early example of this technique, see [5]. For a more modern, pedagogical treatment, see [4].

  3. 3.

    See [11] for a pedagogical review.

  4. 4.

    See, for example, [1, 13], but also [7] for a more optimistic take.

  5. 5.

    For a derivation, see, for example, [3, 11].

  6. 6.

    Note that if we permit parity transformations, which map \(\sigma \mapsto -\sigma\), then we must require that the equivalence relation (49) hold only for states that share the same helicity \(\sigma\).

References

  1. 1.

    Abbott, L.F.: Massless particles with continuous spin indices. Phys. Rev. D 13(8), 2291–2294 (1976). https://doi.org/10.1103/PhysRevD.13.2291

    ADS  MathSciNet  Article  Google Scholar 

  2. 2.

    Balachandran, A.P., Marmo, G., Skagerstam, B.S., Stern, A.: Gauge Symmetries and Fibre Bundles—Applications to Particle Dynamics, 1st edn. Springer, Berlin, Heidelberg (1983). https://doi.org/10.1007/3-540-12724-0. https://www.springer.com/gp/book/9783540127246

  3. 3.

    Barandes, J.A.: Manifestly Covariant Lagrangians, Classical Particles with Spin, and the Origins of Gauge Invariance (2019). https://arxiv.org/abs/1911.08892

  4. 4.

    Deriglazov, A., Rizzuti, B.: Reparametrization-invariant formulation of classical mechanics and the Schrödinger equation. Am. J. Phys. 79(8), 882–885 (2011). https://doi.org/10.1119/1.3593270

    ADS  Article  Google Scholar 

  5. 5.

    Dirac, P.A.M.: Relativity quantum mechanics with an application to compton scattering. Proc. R. Soc. A 111(758), 405–423 (1926). https://doi.org/10.1098/rspa.1926.0074

    ADS  Article  MATH  Google Scholar 

  6. 6.

    Rivas, M.: Kinematical Theory of Spinning Particles. Springer, Berlin (2002)

    Google Scholar 

  7. 7.

    Schuster, P., Toro, N.: On the theory of continuous-spin particles: wavefunctions and soft-factor scattering amplitudes. J. High Energy Phys. 20, 104 (2013). https://doi.org/10.1007/JHEP09(2013)104

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Skagerstam, B.S., Stern, A.: Lagrangian descriptions of classical charged particles with spin. Phys. Scr. 24, 493–497 (1981). https://doi.org/10.1088/0031-8949/24/3/002

    ADS  Article  Google Scholar 

  9. 9.

    Souriau, J.M.: Structure of Dynamical Systems, 1st edn. Birkhäuser, Boston (1997)

    Google Scholar 

  10. 10.

    Stueckelberg, E.C.G.: “Die Wechselwirkungskräfte in der Elektrodynamik und in der Feldtheorie der Kernkraäfte”. Helvetica Physica Acta 11(3), 225–244, 299–328 (1938). https://doi.org/10.5169/seals-110852. https://www.e-periodica.ch/digbib/view?pid=hpa-001:1938:11::636#227

  11. 11.

    Weinberg, S.: The Quantum Theory of Fields, 1st edn. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  12. 12.

    Wigner, E.P.: On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40(1), 149–204 (1939). https://doi.org/10.2307/1968551

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Wigner, E.P.: Invariant Quantum Mechanical Equations of Motion, pp. 161–184. International Atomic Energy Agency, Vienna (1963). https://doi.org/10.1007/978-3-662-09203-3_18

    Google Scholar 

Download references

Acknowledgements

J. A. B. has benefited from personal communications with Howard Georgi, Andrew Strominger, David Griffiths, David Kagan, David Morin, Logan McCarty, Monica Pate, and Alex Lupsasca.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jacob A. Barandes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barandes, J.A. Gauge Invariance for Classical Massless Particles with Spin. Found Phys 51, 7 (2021). https://doi.org/10.1007/s10701-021-00415-2

Download citation

Keywords

  • Gauge theory
  • Particle physics
  • Spin
  • Classical field theory
  • Representation theory
  • Higgs mechanism