Skip to main content
Log in

Quantum Hydrodynamics: Kirchhoff Equations

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In this paper, we show that the Kirchhoff equations are derived from the Schrödinger equation by assuming the wave function to be a polynomial like solution. These Kirchhoff equations describe the evolution of n point vortices in hydrodynamics. In two dimensions, Kirchhoff equations are used to demonstrate the solution to single particle Laughlin wave function as complex Hermite polynomials. We also show that the equation for optical vortices, a two dimentional system, is derived from Kirchhoff equation by using paraxial wave approximation. These Kirchhoff equations satisfy a Poisson bracket relationship in phase space which is identical to the Heisenberg uncertainty relationship. Therefore, we conclude that being classical equations, the Kirchhoff equations, describe both a particle and a wave nature of single particle quantum mechanics in two dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Styer, D.F.: Nine formulations of quantum mechanics. Am. J. Phys. 70, 288 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  2. Wigner, E.P.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)

    Article  ADS  MATH  Google Scholar 

  3. Madelung, E.: Quantum theory in hydrodynamical form. Translated by D.H. Delphenich. Z. Phys. 40, 322 (1927)

  4. Aref, H.: Point vortex dynamics: a classical mathematics playground. J. Math. Phys. 48, 065401 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Gurkan, Z.N.: Thesis “Integrable Vortex Dynamics and Complex Burgers Equation”, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.427.6347&rep=rep1&type=pdf (2005). Accessed 7 March 2019

  6. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys. Rev. 85(2), 166 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. II. Phys. Rev. 85(2), 180 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. de Broglie, L.: Non-linear Wave Mechanics: A Causal Interpretation. Elsevier, Amsterdam (1960)

    MATH  Google Scholar 

  9. Laughlin, R.B.: Anomalous quantum hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395 (1983)

    Article  ADS  Google Scholar 

  10. Wiegmann, P.: Anomalous hydrodynamics of fractional quantum hall states. J. Exp. Theor. Phys. 117(3), 538 (2013)

    Article  ADS  Google Scholar 

  11. Wiegmann, P.B.: Hydrodynamics of Euler incompressible fluid and the fractional quantum Hall effect. Phys. Rev. B 88, 241305(R) (2013)

    Article  ADS  Google Scholar 

  12. Wiegmann, P., Abanov, A.G.: Anomalous hydrodynamics of two-dimensional vortex fluids. Phys. Rev. Lett. 113, 034501 (2014)

    Article  ADS  Google Scholar 

  13. Abanov, A.G.: On the effective hydrodynamics of the fractional quantum Hall effect. J. Phys. A 46, 292001 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Stieltjes, T.J.: Sur quelques theoremes d’algebre. Comptes Rendus de l’Academie des Sciences, Paris, 100, 439–440; Oeuvres Completes, Vol. 1, 440 (1885)

  15. Stieltjes, T.J.: Sur quelques theoremes d’algebre, Comptes Rendus de l’Academie des Sciences, Paris, 100, 620–622. Oeuvres Completes 1, 442–444 (1885)

  16. Chaitanya, K.V.S.S.: Stieltjes electrostatic model interpretation for bound state problems. Pramana J. Phys. 83(1), 139 (2014)

    Article  ADS  Google Scholar 

  17. David, T.: Lecture notes on quantum Hall effect, http://www.damtp.cam.ac.uk/user/tong/qhe/qhe.pdf (2016). Accessed 7 March 2019

  18. Haldane, F.D.M.: Fractional quantization of the Hall effect: a hierarchy of incompressible quantum fluid states. Phys. Rev. Lett. 51, 605 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  19. Ghanmi, A.: A class of generalized complex Hermite polynomials. J. Math. Anal. Appl. 340, 1395 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mehta, M.L.: Random Matrices. Pure and Applied Mathematics (Amsterdam), vol. 142, 3rd edn. Elsevier/Academic Press, Amsterdam (2004)

    MATH  Google Scholar 

  21. Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C., Woerdman, J.P.: Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45(11), 8185 (1992)

    Article  ADS  Google Scholar 

  22. Lax, M., Louisell, W.H., McKnight, W.B.: From Maxwell to paraxial wave optics. Phys. Rev. A 11(4), 1365 (1975)

    Article  ADS  Google Scholar 

  23. Padgett, M.: An experiment to observe the intensity and phase structure of Laguerre–Gaussian laser modes. Am. J. Phys. 64(1), 77 (1996)

    Article  ADS  Google Scholar 

  24. Bliokh, K., Bliokh, Y., Savelev, S., Nori, F.: Semiclassical dynamics of electron wave packet states with phase vortices. Phys. Rev. Lett. 99(19), 190404 (2007)

    Article  ADS  Google Scholar 

  25. Bliokh, K.Y., Dennis, M.R., Nori, F.: Semiclassical dynamics of electron wave packet states with phase vortices. Phys. Rev. Lett. 107(17), 174802 (2011)

    Article  ADS  Google Scholar 

  26. Bliokh, K.Y., Nori, F.: Spatiotemporal vortex beams and angular momentum. Phys. Rev. A 86(3), 033824 (2012)

    Article  ADS  Google Scholar 

  27. Schattschneider, P., Verbeeck, J.: Theory of free electron vortices. Ultramicroscopy 111(9–10), 1461 (2011)

    Article  Google Scholar 

  28. Ladavac, K., Grier, D.G.: Colloidal hydrodynamic coupling in concentric optical vortices. Europhys. Lett. 70, 548–554 (2005)

    Article  ADS  Google Scholar 

  29. Lloyd, S.M., Babiker, M., Thirunavukkarasu, G., Yuan, J.: Electron vortices: beams with orbital angular momentum. Rev. Mod. Phys. 89, 035004 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  30. Clarkson, P.A.: Vortices and polynomials. Stud. Appl. Math. 123, 1–37 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. S. Shiv Chaitanya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaitanya, K.V.S.S. Quantum Hydrodynamics: Kirchhoff Equations. Found Phys 49, 351–364 (2019). https://doi.org/10.1007/s10701-019-00252-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-019-00252-4

Keywords

Navigation