Skip to main content
Log in

Yes, More Decoherence: A Reply to Critics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Recently I published an article in this journal entitled “Less interpretation and more decoherence in quantum gravity and inflationary cosmology” (Crull in Found Phys 45(9):1019–1045, 2015). This article generated responses from three pairs of authors: Vassallo and Esfeld (Found Phys 45(12):1533–1536, 2015), Okon and Sudarsky (Found Phys 46(7):852–879, 2016) and Fortin and Lombardi (Found Phys, 2017). In what follows, I reply to the criticisms raised by these authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This latter point explains in part why I did not include equations in the original paper—a fact that Okon and Sudarsky mention more than once as a defect of my account. I had assumed (wrongly, it seems) that the basic aspects of decoherence were well enough known and appreciated from the prodigious and respected literature—much of which I cited in my paper—that instead of presenting it all yet again, I might more profitably focus on certain philosophical aspects. I will try to remedy this lack of formalism to my critics’ satisfaction in what follows, but again I direct the reader to references cited in this and the original paper.

  2. Those who, prior to decoherence considerations, are already standard-bearers for a particular interpretation ought to acknowledge that decoherence importantly alters both the motivations for and implementations of the various candidate interpretations. However, cataloguing those differences is not my aim here, nor was it in the original paper. Instead, my aim was to emphasize that one can invoke decoherence processes from a standpoint that is neutral with respect to the interpretation debate, and still gain significant explanatory benefits.

  3. Hereafter, unless otherwise noted, all references to VE are to this article; likewise, all references to OS are to Okon and Sudarsky [61] and all references to FL are to Fortin and Lombardi [27].

  4. Qualifications: (i) mixed states needn’t be represented this way; e.g., one might equally well employ the reduced Feynman path integral (RPI) approach described in Mensky [55]. Also, (ii) while both proper and improper mixtures may have identical density matrices, they nevertheless represent vastly different physical situations: the former represents a classical statistical distribution of possible states (where the system definitely occupies one state but it is unknown which), while the latter represents an entangled case (where the system cannot be said to occupy a single state from the ensemble). Because entanglement is a necessary condition for decoherence, whenever one uses the density matrix formalism to study decoherence processes, one is dealing with improper mixtures. One must not lose sight of this failure of uniqueness in the formalism.

  5. Qualifications: again, this proposition isn’t strictly necessary within the standard formalism. Observables—or operators more generally—are derivative entities used to link the formalism to empirical data. This point was made in the original paper in discussion of Shimony’s epistemic circle and by referring to research conducted using non-Hermitian operators.

  6. See Narozhny et al. [59] for theoretical groundwork and Kokorowski et al. [47] as an entry point into fascinating work verifying decoherence models through experiments in atomic interferometry.

  7. More precisely: I used decoherence to explain the cat’s apparently well-defined state within the alive-dead basis, but was careful to say decoherence does not explain why a given observation yields the specific state that it does.

  8. Instead of defending in detail what I name with confidence “the received view”, I direct skeptics to the wealth of literature—spanning nearly half a century—supporting this claim. For starters: Zeh [79], Kübler and Zeh [49], Zurek [82], Zurek [83], Giulini et al. [32], Giulini et al. [31], Diósi and Kiefer [24], Mensky [55], Zeh [80], Zurek [84], Duplantier et al. [26], Joos [45], Zurek [85], Stamp [73], Castagnino et al. [17], Janssen [43], Lombardi et al. [52], Gell-Mann and Hartle [30].

  9. In addition to research from Haroche’s Paris team cited above in Sect. 2.2, the Institute of Quantum Optics and Quantum Information in Austria performed a suite of experiments measuring interference patterns with fullerenes: Arndt et al. [3], Arndt et al. [4], Brezger et al. [16], Hackermüller et al. [35], Hackermüller et al. [34], Hornberger et al. [41].

References

  1. Adler, S.L.: Why decoherence has not solved the measurement problem: a response to P.W. Anderson. Stud. Hist. Philos. Mod. Phys. 34B, 135–142 (2003)

    Article  Google Scholar 

  2. Anglin, J., Paz, J., Zurek, W.: Deconstructing decoherence. Phys. Rev. A 55(6), 4041–4053 (1997)

    Article  ADS  Google Scholar 

  3. Arndt, M., Nairz, O., Vos-Andreae, J., Keller, C., van der Zouw, G., Zeilinger, A.: Wave-particle duality of C\(_{60}\) molecules. Nature 401, 680–682 (1999)

    Article  ADS  Google Scholar 

  4. Arndt, M., Nairz, O., Zeilinger, A.: Interferometry with macromolecules: quantum paradigms tested in the mesoscopic world. In: Bertlmann, R., Zeilinger, A. (eds.) Quantum [Un]Speakables: From Bell to Quantum Information, pp. 333–351. Springer, Berlin (2002)

    Chapter  Google Scholar 

  5. Bacciagaluppi, G.: The role of decoherence in quantum mechanics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. http://plato.standford.edu/archives/win2012/entries/qm-decoherence/ (2012)

  6. Ballentine, L., Yang, Y., Zibin, J.: Inadequacy of Ehrenfest’s theorem to characterize the classical regime. Phys. Rev. A 50, 2854–2859 (1994)

    Article  ADS  Google Scholar 

  7. Batterman, R.: Theories between theories: asymptotic limiting intertheoretic relations. Synthese 103, 171–201 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Batterman, R.: The Devil in the Details: Asymptotic Reasoning in Explanation, Reduction and Emergence. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  9. Bernu, J., Deleglise, S., Sayrin, C., Kuhr, S., Dotsenko, I., Brune, M., Raimond, J.-M., Haroche, S.: Freezing coherent field growth in a cavity by the quantum zeno effect. Phys. Rev. Lett. 101, 180402(4) (2008)

    Article  ADS  Google Scholar 

  10. Berry, M.: Asymptotics, singularities and the reduction of theories. In: Prawitz, D., Skyrms, B., Westerstahl, D. (eds.) Logic, Methodology and Philosophy of Science IX. Elsevier, Amsterdam (1994)

    Google Scholar 

  11. Berry, M.: Chaos and the semiclassical limit of quantum mechanics (is the moon there when somebody looks?). In: Russell, R., Clayton, P., Wegter-McNelly, K., Polkinghorne, J. (eds.) Quantum Mechanics: Scientific Perspectives on Divine Action. CTNS Publications, Vatican Observatory (2001)

    Google Scholar 

  12. Bertet, P., Auffeves, A., Maioli, S., Osnaghi, T., Meunier, T., Brune, M., Raimond, J.-M., Haroche, S.: Direct measurement of the Wigner function of a one-photon Fock state in a cavity. Phys. Rev. Lett. 89, 200402 (2002)

    Article  ADS  Google Scholar 

  13. Blum, K.: Density Matrix Theory and Applications, 2nd edn. Plenum Press, New York, London (1996)

    Book  MATH  Google Scholar 

  14. Bokulich, A.: Reexamining the Quantum-Classical Relation: Beyond Reductionism and Pluralism. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  15. Bose, S., Jacobs, K., Knight, P.: Scheme to probe the decoherence of a macroscopic object. Phys. Rev. A 59(5), 3204–3210 (1999)

    Article  ADS  Google Scholar 

  16. Brezger, B., Hackermüller, L., Uttenthaler, S., Petschinka, J., Arndt, M., Zeilinger, A.: Matter-wave interferometer for large molecules. Phys. Rev. Lett. 88, 100404 (2002)

    Article  ADS  Google Scholar 

  17. Castagnino, M., Laura, R., Lombardi, O.: A general conceptual framework for decoherence in closed and open systems. Philos. Sci. 74, 968–980 (2007)

    Article  MathSciNet  Google Scholar 

  18. Crull, E.: Exploring philosophical implications of quantum decoherence. Philos. Compass 8(9), 875–885 (2013)

    Article  Google Scholar 

  19. Crull, E.: Quantum Decoherence and Interlevel Relations. Ph.D. Thesis, University of Notre Dame, Notre Dame, Indiana (2011)

  20. Crull, E.: Less interpretation and more decoherence in quantum gravity and inflationary cosmology. Found. Phys. 45(9), 1019–1045 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Cucchietti, F., Paz, J., Zurek, W.: Decoherence from spin environments. Phys. Rev. A 72(5), 052113(8) (2005)

    Article  ADS  Google Scholar 

  22. Davidovich, L., Brune, M., Raimond, J.-M., Haroche, S.: Mesoscopic quantum coherences in cavity QED: preparation and decoherence monitoring schemes. Phys. Rev. A 53, 1295 (1996)

    Article  ADS  Google Scholar 

  23. Deléglise, S., Dotsenko, I., Sayrin, C., Bernu, J., Brune, M., Raimond, J.-M., Haroche, S.: Reconstruction of non-classical cavity field states with snapshots of their decoherence. Nature 455, 510–514 (2008)

    Article  ADS  Google Scholar 

  24. Diósi, L., Kiefer, C.: Robustness and diffusion of pointer states. Phys. Rev. Lett. 85(17), 3552–3555 (2000)

    Article  ADS  Google Scholar 

  25. Dirac, P.: The Principles of Quantum Mechanics, 4th edn. Clarendon Press, Oxford (1958)

    MATH  Google Scholar 

  26. Duplantier, B., Raimond, J.-M., Rivasseau, V. (eds.): Quantum Decoherence, Volume 48 of Poincaré Seminar 2005. Birkhäuser Verlag (2007)

  27. Fortin, S., Lombardi, O.: Interpretation and decoherence: a contribution to the debate Vassallo & Esfeld vs Crull. Found. Phys. (2017, forthcoming)

  28. Fox, M.: Quantum Optics: An Introduction. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  29. Gell-Mann, M., Hartle, J.B.: Equivalent sets of histories and multiple quasiclassical realms. arXiv:gr-qc/9404013v3 (1996)

  30. Gell-Mann, M., Hartle, J.B.: Adaptive coarse graining, environment, strong decoherence, and quasiclassical realms. Phys. Rev. A 89(5), 052125(10) (2014)

    Article  ADS  Google Scholar 

  31. Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, I.-O., Zeh, H.: Decoherence and the Appearance of a Classical World in Quantum Theory, 1st edn. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  32. Giulini, D., Kiefer, C., Zeh, H.: Symmetries, superselection rules, and decoherence. Phys. Lett. A 199(5–6), 291–298 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Habib, S., Shizume, K., Zurek, W.: Decoherence, chaos, and the correspondence principle. Phys. Rev. Lett. 80, 4361–4365 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Hackermüller, L., Hornberger, K., Brezger, B., Zeilinger, A., Arndt, M.: Decoherence of matter waves by thermal emission of radiation. Nature 427, 711–714 (2004)

    Article  ADS  Google Scholar 

  35. Hackermüller, L., Uttenthaler, S., Hornberger, K., Reiger, E., Brezger, B., Zeilinger, A., Arndt, M.: Wave nature of biomolecules and fluorofullerenes. Phys. Rev. Lett. 91, 090408 (2003)

    Article  ADS  Google Scholar 

  36. Halliwell, J.: A review of the decoherent histories approach to quantum mechanics. Ann. N. Y. Acad. Sci. 755, 726–740 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  37. Haroche, S.: Controlling photons in a box and exploring the quantum to classical boundary. http://nobelprize.org (2012, 8 December 2012)

  38. Hartmann, S., Suppes, P.: Entanglement, upper probabilities and decoherence in quantum mechanics. In: Suárez, M., Dorato, M., Rédei, M. (eds.) EPSA Philosophical Issues in the Sciences, pp. 93–103. Springer, Berlin (2010)

  39. Hines, A.P., Stamp, P.: Decoherence in quantum walks and quantum computers. Can. J. Phys. 86, 541–548 (2008)

    Article  ADS  Google Scholar 

  40. Hornberger, K.: Master equation for a quantum particle in a gas. Phys. Rev. Lett. 97, 060601(4) (2006)

    Article  ADS  Google Scholar 

  41. Hornberger, K., Uttenthaler, S., Brezger, B., Hackermüller, L., Arndt, M., Zeilinger, A.: Collisional decoherence observed in matter wave interferometry. Phys. Rev. Lett. 90(16), 160401(4) (2003)

    Article  ADS  Google Scholar 

  42. Horuzhy, S.: Introduction to Algebraic Quantum Field Theory. Kluwer Academic Publishers, Dordrecht (1990)

    Google Scholar 

  43. Janssen, H.: Reconstructing reality: Environment-induced decoherence, the measurement problem, and the emergence of definiteness in quantum mechanics. http://philsci-archive.pitt.edu (2008)

  44. Joos, E.: Introduction. In: Blanchard, P., Giulini, D., Joos, E., Kiefer, C., Stamatescu, I.-O. (eds.) Decoherence: Theoretical, Experimental, and Conceptual Problems. Proceedings of the Bielefeld Workshop, Nov1998, pp. 1–17. Springer, Berlin (2000)

  45. Joos, E.: Dynamical consequences of strong entanglement. In: Duplantier, B., Raimond, J.-M., Rivasseau, V. (eds.) Quantum Decoherence, pp. 177–192. Birkhäuser Verlag, Basel (2005)

  46. Joos, E., Zeh, H.: The emergence of classical properties through interaction with the environment. Zeitschrift für Physik B 59, 223–243 (1985)

    Article  ADS  Google Scholar 

  47. Kokorowski, D.A., Cronin, A.D., Robers, T.D., Pritchard, D.E.: From single- to multiple-photon decoherence in an atom interferometer. Phys. Rev. Lett. 86(11), 2191–2195 (2001)

    Article  ADS  Google Scholar 

  48. Koksma, J., Prokopec, T., Schmidt, M.G.: Decoherence in an interacting quantum field theory: the vacuum case. Phys. Rev. D 81, 065030 (2010)

    Article  ADS  Google Scholar 

  49. Kübler, O., Zeh, H.: Dynamics of quantum correlations. Annalen der Physik 76, 405–418 (1973)

    Google Scholar 

  50. Leggett, A., Chakravarty, S., Dorsey, A., Fisher, M., Garg, A., Zwerger, W.: Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59(1), 1–85 (1987)

    Article  ADS  Google Scholar 

  51. Liboff, R.: The correspondence principle revisited. Phys. Today 37, 50–55 (1984)

    Article  Google Scholar 

  52. Lombardi, O., Fortin, S., Castagnino, M., Ardenghi, J. S.: Compatibility between environment-induced decoherence and the modal-Hamiltonian interpretation of quantum mechanics (2010)

  53. Lombardo, F., Mazzitelli, F.: Coarse graining and decoherence in quantum field theory. Phys. Rev. D 53(4), 2001–2011 (1996)

    Article  ADS  Google Scholar 

  54. Mavromatos, N., Sarkar, S.: Probing models of quantum decoherence in particle physics and cosmology. J. Phys. Conf. Ser. 67, 012011 (2007)

    Article  Google Scholar 

  55. Mensky, M.B.: Quantum Measurements and Decoherence: Models and Phenomenology. Kluwer Academic Publishers, Dordrecht, Boston (2000)

    Book  MATH  Google Scholar 

  56. Messiah, A.: Quantum Mechanics, vol. I and II. North-Holland Publishing, Amsterdam (1965)

    MATH  Google Scholar 

  57. Monroe, C., Meekhof, D., King, B.E., Wineland, D.J.: A ‘Schrödinger cat’ superposition state of an atom. Science 272, 1131 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  58. Myatt, C.J., King, B.E., Turchette, Q., Sackett, C.A., Kielpinski, D., Itano, W.M., Monroe, C., Wineland, D.J.: Decoherence of quantum superpositions through coupling to engineered reservoirs. Nature 403, 269–273 (2000)

    Article  ADS  Google Scholar 

  59. Narozhny, N., Sanchez-Mondragon, J., Eberly, J.: Coherence versus incoherence: collapse and revival in a simple quantum model. Phys. Rev. A 23, 236–247 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  60. Nelson, E.: Quantum decoherence during inflation from gravitational nonlinearities. J. Cosmol. Astropart. Phys. 2016, 022 (2016)

    Article  MathSciNet  Google Scholar 

  61. Okon, E., Sudarsky, D.: Less decoherence and more coherence in quantum gravity, inflationary cosmology and elsewhere. Found. Phys. 46(7), 852–879 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  62. Paz, J., Habib, S., Zurek, W.: Reduction of the wave packet: preferred observable and decoherence time scale. Phys. Rev. D 47, 488–501 (1993)

    Article  ADS  Google Scholar 

  63. Paz, J., Zurek, W.: Quantum limit of decoherence: environment induced superselection of energy eigenstates. Phys. Rev. Lett. 82, 5181–5185 (1999)

    Article  ADS  Google Scholar 

  64. Pepper, B., Ghobadi, R., Jeffrey, E., Simon, C., Bouwmeester, D.: Optomechanical superpositions via nested interferometry. Phys. Rev. Lett. 109(2), 023601(5) (2012)

    Article  ADS  Google Scholar 

  65. Raimond, J.-M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  66. Raimond, J.-M., Haroche, S.: Monitoring the decoherence of mesoscopic quantum superpositions in a cavity. Séminar Poincaré 2, 25–64 (2005)

    Google Scholar 

  67. Ridderbos, K.: The loss of coherence in quantum cosmology. Stud. Hist. Philos. Mod. Phys. 30(B), 41–60 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  68. Rosaler, J.: Is de Broglie—Bohm theory specially equipped to recover classical behavior? Philos. Sci. 82(5), 1175–1187 (2015)

    Article  MathSciNet  Google Scholar 

  69. Scala, M., Kim, M., Morely, G., Barker, P., Bose, S.: Matter-wave interferometry of a levitated thermal nano-oscillator induced and probed by a spin. Phys. Rev. Lett. 111(18), 180403(5) (2013)

    Article  ADS  Google Scholar 

  70. Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76(4), 1267–1305 (2005)

    Article  ADS  Google Scholar 

  71. Schlosshauer, M.: Decoherence and the Quantum-to-Classical Transition, 2nd edn. Springer, Berlin (2007)

    Google Scholar 

  72. Sekatski, P., Aspelmeyer, M., Sangouard, N.: Macroscopic optomechanics from displaced single-photon entanglement. Phys. Rev. Lett. 112(8), 080502(5) (2014)

    Article  ADS  Google Scholar 

  73. Stamp, P.: The decoherence puzzle. Stud. Hist. Philos. Mod. Phys. 37, 467–497 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  74. Vassallo, A., Esfeld, M.: On the importance of interpretation in quantum physics: a reply to Elise Crull. Found. Phys. 45(12), 1533–1536 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  75. Wallace, D.: Decoherence and its role in the modern measurement problem. Philos. Trans. R. Soc. A 370, 4576–4593 (2012a)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  76. Wallace, D.: The Emergent Multiverse: Quantum Theory according to the Everett Interpretation. Oxford University Press, Oxford (2012b)

    Book  MATH  Google Scholar 

  77. Walls, D., Milburn, G.: Quantum Optics. Springer, Berlin (2012)

    MATH  Google Scholar 

  78. Wan, C., Scala, M., Bose, S., Frangeskou, C., Rahman, A.A., Morely, G., Barker, P., Kim, M.: Tolerance in the Ramsey interference of a traped nanodiamond. Phys. Rev. Lett. 93(4), 043852(8) (2016)

    ADS  Google Scholar 

  79. Zeh, H.: On the interpretation of measurement in quantum theory. Found. Phys. 1, 69–76 (1970)

    Article  ADS  Google Scholar 

  80. Zeh, H.: Ch 2: Basic concepts and their interpretation. arXiv:quant-ph/9506020v3 (2002)

  81. Zeh, H.: There is no “first” quantization. Phys. Lett. A 309, 329–334 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  82. Zurek, W.: Pointer basis of quantum apparatus: into what mixture does the wave packet collapse? Phys. Rev. D 24, 1516–1525 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  83. Zurek, W.: Environment-induced superselection rules. Phys. Rev. D 26, 1862–1880 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  84. Zurek, W.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  85. Zurek, W.: Decoherence and the transition from quantum to classical- revisited. In: Duplantier, B., Raimond, J.-M., Rivasseau, V. (eds.) Quantum Decoherence, pp. 1–32. Birkhäuser Verlag, Basel (2007)

    Google Scholar 

Download references

Acknowledgements

I’d like to thank Max Schlosshauer, Don Howard, Claus Kiefer, Carlo Rovelli, Guido Bacciagaluppi and an anonymous referee for their support and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elise M. Crull.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crull, E.M. Yes, More Decoherence: A Reply to Critics. Found Phys 47, 1428–1463 (2017). https://doi.org/10.1007/s10701-017-0116-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-017-0116-1

Keywords

Navigation