Advertisement

Foundations of Physics

, Volume 47, Issue 8, pp 1115–1154 | Cite as

On the Character of Quantum Law: Complementarity, Entanglement, and Information

  • Arkady PlotnitskyEmail author
Article

Abstract

This article considers the relationships between the character of physical law in quantum theory and Bohr’s concept of complementarity, under the assumption of the unrepresentable and possibly inconceivable nature of quantum objects and processes, an assumption that may be seen as the most radical departure from realism currently available. Complementarity, the article argues, is a reflection of the fact that, as against classical physics or relativity, the behavior of quantum objects of the same type, say, all electrons, is not governed by the same physical law in all contexts, specifically in complementary contexts. On the other hand, the mathematical formalism of quantum mechanics offers correct probabilistic or statistical predictions (no other predictions are possible on experimental grounds) in all contexts, here, again, under the assumption that quantum objects themselves and their behavior are beyond representation or even conception. Bohr, in this connection, spoke of “an entirely new situation as regards the description of physical phenomena that, the notion of complementarity aims at characterizing.” The article also considers the relationships among complementarity, entanglement, and quantum information, by basing these relationships on this understanding of complementarity.

Keywords

Complementarity Entanglement Measuring instruments Quantum information Reality 

Notes

Acknowledgements

I would like to thank Mauro D’Ariano, Jan Faye, Henry Folse, Laurent Freidel, Lucien Hardy, Gregg Jaeger, Andrei Khrennikov, and Paolo Perinotti for invaluable discussions concerning the subjects addressed in this article. I am also grateful to both anonymous readers of the article for helpful comments and suggestions.

References

  1. 1.
    Feynman, R.: The Character of Physical Law. MIT Press, Cambridge, MA (1965) rpt (1994)Google Scholar
  2. 2.
    Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48, 696–702 (1935)ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Schrödinger, E.: The present situation in quantum mechanics (1935). In: Wheeler, J.A., Zurek, W.H. (eds.) Quantum Theory and Measurement, pp. 152–167. Princeton University Press, Princeton (1983)Google Scholar
  4. 4.
    Heisenberg, W.: The Physical Principles of the Quantum Theory. Dover, New York (1930). Translated by Eckhart, K., and Hoyt, F. C. rpt (1949)Google Scholar
  5. 5.
    Bohr, N.: The Philosophical Writings of Niels Bohr, vol. 3. Ox Bow Press, Woodbridge (1987)Google Scholar
  6. 6.
    Wheeler, J.A.: Geons, Black Holes, and Quantum Foam: A Life in Physics. W. W. Norton, New York (1998)zbMATHGoogle Scholar
  7. 7.
    Von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1932). R. T. rpt, Translated by Beyer (1983)Google Scholar
  8. 8.
    Plotnitsky, A.: The Principles of Quantum Theory, from Planck’s Quanta to the Higgs Boson: The Nature of Quantum Reality and the Spirit of Copenhagen. Springer/Nature, New York (2016)CrossRefzbMATHGoogle Scholar
  9. 9.
    Deleuze, G., Guattari, F.: What is Philosophy? Columbia University Press, New York (1994). Translated by Tomlinson, H., and Burchell, GGoogle Scholar
  10. 10.
    Bohr, N.: Causality and complementarity (1937). In: Faye, J., Folse, H.J. (eds.) The Philosophical Writings of Niels Bohr. Causality and Complementarity, Supplementary Papers, vol. 4, pp. 83–91. Ox Bow Press, Woodbridge, CT (1994)Google Scholar
  11. 11.
    Interpretations of quantum mechanics. Wikipedia. http://en.wikipedia.org/wiki/Interpretationsofquantummechanics
  12. 12.
    Einstein, A.: 1919, What is the Theory of Relativity? (1919). Einstein, A. Ideas and Opinions, pp. 227–231. Bonanza Books, New York (1954)Google Scholar
  13. 13.
    Rovelli, C.: An argument against a realistic interpretation of the wave function. Found. Phys. 46, 1229–1237 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Plotnitsky, A., Khrennikov, A.: Reality without realism: on the ontological and epistemological architecture of quantum mechanics. Found. Phys. 25(10), 1269–1300 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kant, I.: Critique of Pure Reason. Cambridge University Press, Cambridge (1997). Translated by Guyer. P., and Wood, A. WGoogle Scholar
  16. 16.
    Jaeger, G.: Quantum Objects: Non-local Correlation, Causality and Objective Indefiniteness in the Quantum World. Springer, New York (2013)Google Scholar
  17. 17.
    Folse, H.J.: The methodological lesson of complementarity: Bohr’s naturalistic epistemology. Phys. Scr. T163, 014001 (2014). doi: 10.1088/0031-8949/2014/T163/014001 ADSCrossRefGoogle Scholar
  18. 18.
    Heisenberg, W.: Quantum-theoretical re-interpretation of kinematical and mechanical relations. In: Van der Waerden, B.L. (ed.) Sources of Quantum Mechanics, pp. 261–277. Dover, New York, Reprint 1968 (1925)Google Scholar
  19. 19.
    Mehra, J., Rechenberg, H.: The Historical Development of Quantum Theory, 6 vols. Springer, Berlin (2001)Google Scholar
  20. 20.
    Chiribella, G., D’Ariano, G.M., Perinotti, P.: Informational derivation of quantum theory. Phys. Rev. A 84, 012311-1–012311-39 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    D’Ariano, G.M., Chribella, G., Perinotti, P.: Quantum Theory from First Principles: An Informational Approach. Cambridge University Press, Cambridge (2017)CrossRefzbMATHGoogle Scholar
  22. 22.
    Hardy, L.: Foliable operational structures for general probabilistic theory. In: Halvorson, H. (ed.) Deep Beauty: Understanding the Quantum World Through Mathematical Innovation, pp. 409–442. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  23. 23.
    Wheeler, J.A.: Information, physics, quantum: the search for links. In: Zurek, W.H. (ed.) Complexity, Entropy, and the Physics of Information. Addison-Wesley, Redwood City, CA (1990)Google Scholar
  24. 24.
    Zeilinger, A.: A foundational principle for quantum mechanics. Found. Phys. 29(4), 631–643 (1999)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Hardy, L.: Quantum mechanics from five reasonable axioms. arXiv:quant-ph/0101012v4 (2001)
  26. 26.
    Fuchs, C.A.: Quantum mechanics as quantum information, mostly. J. Mod. Opt. 50, 987–223 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Fuchs, C.A., Mermin, N.D., Schack, R.: An introduction to QBism with an application to the locality of quantum mechanics. Am. J. Phys. 82, 749 (2014). doi: 10.1119/1.4874855 ADSCrossRefGoogle Scholar
  28. 28.
    Pauli, W.: Writings on Physics and Philosophy. Springer, Berlin (1994)CrossRefzbMATHGoogle Scholar
  29. 29.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? In: Wheeler, J.A., Zurek, W.H. (ed.) Quantum Theory and Measurement, pp. 138–141. Princeton University Press, Princeton, Reprint 1983 (1935)Google Scholar
  30. 30.
    Bohr, N.: Interview with Thomas Kuhn, Aage Petersen, and Eric Rüdinger, 17 November 1962, Niels Bohr Archive. Copenhagen and American Institute of Physics, College Park, MD (1962)Google Scholar
  31. 31.
    Born, M.: Quantenmechanik der Stoßvorgänge. Z. Phys. 38, 803–827 (1926)ADSCrossRefzbMATHGoogle Scholar
  32. 32.
    Ozawa, M.: Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurements. Phys. Rev. A 67, 042105 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    Busch, P., Shilladay, C.: Complementarity and uncertainty in Mach-Zehnder interferometry and beyond. Phys. Rep. 435, 1–31 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    Bohr, N.: The Causality Problem in Atomic Physics (1938). In: Faye, J., Folse, H.J. (eds.) The Philosophical Writings of Niels Bohr. Causality and Complementarity, Supplementary Papers, vol. 4, pp. 94–121. Ox Bow Press, Woodbridge, CT (1987)Google Scholar
  35. 35.
    Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Camb. Philos. Soc. 31, 555–563 (1935)ADSCrossRefzbMATHGoogle Scholar
  36. 36.
    Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Camb. Philos. Soc. 32, 446–452 (1936)ADSCrossRefzbMATHGoogle Scholar
  37. 37.
    Born, M.: The Einstein-Born Letters. Walker, New York (2005). Translated by Born, IGoogle Scholar
  38. 38.
    Einstein, A.: Remarks to the essays appearing in this collective volume. In: Schillp, P. (ed.) Albert Einstein: Philosopher-Scientist, pp. 663–688. Tudor, New York, New York (1949)Google Scholar
  39. 39.
    Plotnitsky, A.: Epistemology and Probability: Bohr, Heisenberg. Schrödinger and the Nature of Quantum-Theoretical Thinking. Springer, New York (2009)zbMATHGoogle Scholar
  40. 40.
    Greenberger, D.M., Horne, M.A., Zeilinger, A.: Going beyond Bell’s theorem. In: Kafatos, M. (ed.) Bell’s Theorem, Quantum Theory and Conceptions of the Universe, pp. 69–72. Kluwer, Dordrecht (1989)Google Scholar
  41. 41.
    Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1142 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Hardy, L.: Nonlocality for two particles without inequalities for almost all entangled states. Phys. Rev. Lett. 71, 1665–1668 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    D’Ariano, G.M., Jaeger, G.M., Khrennikov, G., Plotnitsky, A. (eds.): Quantum theory: advances and problems. Phys. Scr. T163, 014006 (2014)Google Scholar
  45. 45.
    Khrennikov, A., de Raedt, H., Plotnitsky, A., Polyakov, S. (eds.): Probing the Limits of Quantum Mechanics: Theory and Experiment. 1 and 2, Found. Phys. 1(45), 7 (2015) (Found. Phys. 2(45), 8)Google Scholar
  46. 46.
    D’Ariano, G.M., Khrennikov, A. (eds.): Quantum foundations: information approach. Philos. Trans. R. Soc. A 374, 20150244 (2016)Google Scholar
  47. 47.
    Mermin, N.D.: Boojums All the Way Through. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  48. 48.
    Khrennikov, A.: Demystification of Quantum Entanglement, arXiv:0905.4791v3 [physics.gen-ph] (2010)
  49. 49.
    ‘t Hooft, G.: Determinism in free bosons. Int. J. Theor. Phys. 42, 355–361 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Penrose, R.: On gravity’s role in quantum state reduction. In: Callender, C., Huggett, N. (eds.) Physics Meets Philosophy at the Planck Scale: Contemporary Theories of Quantum Gravity, pp. 290–304. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  51. 51.
    Haroche, S.: Entanglement and decoherence in cavity quantum electrodynamics experiments. In: Gonis, T., Turchi, P.E.A. (eds.) Decoherence and Its Implications in Quantum Computation and Information Transfer, pp. 211–223. IOS Press, Amsterdam (2001)Google Scholar
  52. 52.
    Haroche, S., Raimond, J.-M.: Exploring the Quantum: Atoms, Cavities, and Photons. Oxford University Press, Oxford (2006)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Theory and Cultural Studies ProgramPurdue UniversityWest LafayetteUSA

Personalised recommendations