Skip to main content
Log in

Sporadic SICs and the Normed Division Algebras

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Symmetric informationally complete quantum measurements, or SICs, are mathematically intriguing structures, which in practice have turned out to exhibit even more symmetry than their definition requires. Recently, Zhu classified all the SICs whose symmetry groups act doubly transitively. I show that lattices of integers in the complex numbers, the quaternions and the octonions yield the key parts of these symmetry groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zauner, G.: Quantum designs—foundations of a noncommutative theory of designs. PhD thesis, University of Vienna. http://www.gerhardzauner.at/qdmye.html (1999)

  2. Renes, J.M., Blume-Kohout, R., Scott, A.J., Caves, C.M.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45(6), 2171 arXiv:quant-ph/0310075 (2004)

  3. Scott, A.J., Grassl, M.: SIC-POVMs: a new computer study. J. Math. Phys. 51(4), 042203. arXiv:0910.5784 [quant-ph] (2010)

  4. Fuchs, C.A.: QBism: the perimeter of quantum Bayesianism. arXiv:1003.5209 [quant-ph] (2010)

  5. Fuchs, C.A., Schack, R.: Quantum-Bayesian coherence. Rev. Modern Phys. 85(4), 1693–1715. arXiv:1301.3274 [quant-ph] (2013)

  6. Fuchs, C.A., Stacey, B.C.: Some negative remarks on operational approaches to quantum theory. In: Chiribella, G., Spekkens, R.W. (eds.) Quantum Theory: Informational Foundations and Foils (Springer, 2016), pp. 283–305. arXiv:1401.7254 [quant-ph] (2016)

  7. Graydon, M.A., Appleby, D.M.: Quantum conical designs. J. Phys. A 49(8), 085301. arXiv:1507.05323 [quant-ph] (2016)

  8. Appleby, D.M., Flammia, S., McConnell, G., Yard, J.: Generating ray class fields of real quadratic fields via complex equiangular lines. arXiv:1604.06098 [math.NT] (2016)

  9. Zhu, H.: Quasiprobability representations of quantum mechanics with minimal negativity. Phys. Rev. Lett. 117(12), 120404. arXiv:1604.06974 [quant-ph] (2016)

  10. DeBrota, J.B., Fuchs, C.A.: Negativity bounds for Weyl–Heisenberg quasiprobability representations. arXiv:1703.08272 [quant-ph] (2017)

  11. Appleby, M., Chien, T.-Y., Flammia, S., Waldron, S.: Constructing exact symmetric informationally complete measurements from numerical solutions. arXiv:1703.05981 [quant-ph] (2017)

  12. Scott, A.J.: SICs: extending the list of solutions. arXiv:1703.03993 [quant-ph] (2017)

  13. Fuchs, C.A., Hoang, M.C., Stacey, B.C.: The SIC question: history and state of play. arXiv:1703.07901 (2017)

  14. Chiribella, G., Spekkens, R.W.: Introduction. In: Chiribella, G., Spekkens, R.W. (eds.) Quantum Theory: Informational Foundations and Foils, pp. 1–18. Springer, Berlin (2016)

    Chapter  Google Scholar 

  15. D’Ariano, G.M., Jaeger, G., Khrennikov, A., Plotnitsky, A.: Preface of the special issue, quantum theory: advances and problems. Phys. Scr. T163, 010301 (2014)

    Article  Google Scholar 

  16. D’Ariano, G.M., Khrennikov, A.: Preface of the special issue, quantum foundations: information approach. Philos. Trans. R. Soc. A 374, 20150244 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Appleby, M., Fuchs, C.A., Stacey, B.C., Zhu, H.: Introducing the qplex: a novel arena for quantum theory. arXiv:1612.03234 (2016)

  18. Fuchs, C.A., Stacey, B.C.: QBism: quantum theory as a hero’s handbook. arXiv:1612.07308 (2016)

  19. Zhu, H.: Quantum state estimation and symmetric informationally complete POMs. PhD thesis, National University of Singapore. http://scholarbank.nus.edu.sg/bitstream/handle/10635/35247/ZhuHJthesis.pdf (2012)

  20. Szymusiak, A., Słomczyński, W.: Informational power of the Hoggar symmetric informationally complete positive operator-valued measure. Phys. Rev. A 94(1), 012122. arXiv:1512.01735 [quant-ph] (2016)

  21. Stacey, B.C.: SIC-POVMs and compatibility among quantum states. Mathematics 4(2), 36. arXiv:1404.3774 [quant-ph] (2016)

  22. Zhu, H.: Super-symmetric informationally complete measurements. Ann. Phys. 362, 311–326. arXiv:1412.1099 [quant-ph] (2015)

  23. Baez, J.C.: On quaternions and octonions: their geometry, arithmetic, and symmetry by John H. Conway and Derek A. Smith. Bull. Am. Math. Soc. 42, 229–243. http://math.ucr.edu/home/baez/octonions/conway_smith/ (2005)

  24. Wilson, R.A.: The Finite Simple Groups. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  25. Baez, J.C., Egan, G., Silverman, T.: Integral octonions. http://math.ucr.edu/home/baez/octonions/integers/ (2016)

  26. \(n\)-Lab contributors. ADE classification. https://ncatlab.org/nlab/show/ADE+classification (2015)

  27. Viazovska, M.: The sphere packing problem in dimension 8. Ann. Math. arXiv:1603.04246 [math.NT] (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blake C. Stacey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stacey, B.C. Sporadic SICs and the Normed Division Algebras. Found Phys 47, 1060–1064 (2017). https://doi.org/10.1007/s10701-017-0087-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-017-0087-2

Keywords

Navigation