Foundations of Physics

, Volume 47, Issue 8, pp 1100–1114 | Cite as

Bell’s Nonlocality in a General Nonsignaling Case: Quantitatively and Conceptually

  • Elena R. LoubenetsEmail author


Quantum violation of Bell inequalities is now used in many quantum information applications and it is important to analyze it both quantitatively and conceptually. In the present paper, we analyze violation of multipartite Bell inequalities via the local probability model—the LqHV (local quasi hidden variable) model (Loubenets in J Math Phys 53:022201, 2012), incorporating the LHV model only as a particular case and correctly reproducing the probabilistic description of every quantum correlation scenario, more generally, every nonsignaling scenario. The LqHV probability framework allows us to construct nonsignaling analogs of Bell inequalities and to specify parameters quantifying violation of Bell inequalities—Bell’s nonlocality—in a general nonsignaling case. For quantum correlation scenarios on an N-qudit state, we evaluate these nonlocality parameters analytically in terms of dilation characteristics of an N-qudit state and also, numerically—in d and N. In view of our rigorous mathematical description of Bell’s nonlocality in a general nonsignaling case via the local probability model, we argue that violation of Bell inequalities in a quantum case is not due to violation of the Einstein–Podolsky–Rosen (EPR) locality conjectured by Bell but due to the improper HV modelling of “quantum realism”.


Nonsignaling Bell’s nonlocality The LqHV modelling Quantum realism 



The valuable discussions with Professor A. Khrennikov are very much appreciated.


  1. 1.
    Bell, J.S.: On the Einstein Podolsky Rosen Paradox. Physics 1, 195–200 (1964)Google Scholar
  2. 2.
    Bell, J.S.: On the Problem of Hidden Variables in Quantum Mechanics. Rev. Mod. Phys. 38, 447–452 (1966)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bell, J.S.: La Nouvelle Cuisine. Speakable and Unspeakable in Quantum Mechanics, 2nd edn. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  4. 4.
    Loubenets, E.R.: “Local Realism”, Bell’s Theorem and Quantum “Locally Realistic” Inequalities. Found. Phys. 35, 2051–2072 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Loubenets, E.R.: On the probabilistic description of a multipartite correlation scenario with arbitrary numbers of settings and outcomes per site. J. Phys. A 41, 445303 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Loubenets, E.R.: Local quasi hidden variable modelling and violations of Bell-type inequalities by a multipartite quantum state. J. Math. Phys. 53, 022201 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Loubenets, E.R.: Context-invariant and local quasi hidden variable (qHV) modelling versus contextual and nonlocal HV modelling. Found. Phys. 45, 840–850 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Loubenets, E.R.: On the existence of a local quasi hidden variable (LqHV) model for each N-qudit state and the maximal quantum violation of Bell inequalities. J. Quantum Inf. 14, 1640010 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Khrennikov, A.: Interpretations of Probability, 2nd edn. De Gruyter, Berlin (2009)CrossRefzbMATHGoogle Scholar
  10. 10.
    Khrennikov, A.: Contextual Approach to Quantum Formalism. Springer, Berlin (2009)CrossRefzbMATHGoogle Scholar
  11. 11.
    Khrennikov, A.: Bell argument: locality or realism? Time to make the choice. AIP Conf. Proc. 1424, 160–175 (2012)ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    Gisin, N.: Quantum Chance. Nonlocality, Teleportation and Other Quantum Marvels. Springer, Cham (2014)Google Scholar
  13. 13.
    D’Ariano, G.M., Jaeger, G., Khrennikov, A., Plotnitsky, A.: Preface of the special issue on quantum theory: advances and problems. Phys. Scr. 163, 010301–014034 (2014)CrossRefGoogle Scholar
  14. 14.
    Khrennikov, A., de Raedt, H., Plotnitsky, A., and Polyakov, S.: Preface of the special issue probing the limits of quantum mechanics: theory and experiment, vol. 1. Found. Phys. 45(7), 707–710 (2015)Google Scholar
  15. 15.
    Loubenets, E.R.: Multipartite Bell-type inequalities for arbitrary numbers of settings and outcomes per site. J. Phys. A 41, 445304 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Terhal, B.M., Doherty, A.C., Schwab, D.: Symmetric extensions of quantum states and local hidden variable theories. Phys. Rev. Lett. 90, 157903 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Loubenets, E.R.: Quantum states satisfying classical probability constraints. Banach Center Publ. 73, 325–337 (2006)Google Scholar
  18. 18.
    Loubenets, E.R.: Class of bipartite quantum states satisfying the original Bell inequality. J. Phys. A 38, L653–L658 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Cirel’son, B.S.: Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4, 93–100 (1980)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Tsirelson, B.S.: Quantum analogues of the Bell inequalities. The case of two spatially separated domains. J. Sov. Math. 36, 557–570 (1987)CrossRefGoogle Scholar
  21. 21.
    Werner, R.F., Wolf, M.M.: All multipartite Bell correlation inequalities for two dichotomic observables per site. Phys. Rev. A 64, 032112 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    Scarani, V., Gisin, N.: Spectral decomposition of Bell’s operators for qubits. J. Phys. A 34, 6043–6053 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Junge, M., Palazuelos, C., Perez-Garcia, D., Villanueva, I., Wolf, M.M.: Unbounded violations of bipartite Bell Inequalities via operator space theory. Commun. Math. Phys. 300, 715–739 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Junge, M., Palazuelos, C.: Large violation of Bell inequalities with low entanglement. Comm. Math. Phys. 306, 695–746 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Palazuelos, C.: On the largest Bell violation attainable by a quantum state. J. Funct. Anal. 267, 1959–1985 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Palazuelos, C., Vidick, T.: Survey on nonlocal games and operator space theory. J. Math. Phys. 57, 015220 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Junge, M., Oikhberg, T., Palazuelos, C.: Reducing the number of questions in nonlocal games. J. Math. Phys. 57(10), 102203 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Loubenets, E.R.: New concise upper bounds on quantum violation of general multipartite Bell inequalities. arXiv:1612.01499 (2016)
  29. 29.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)ADSCrossRefzbMATHGoogle Scholar
  30. 30.
    Loubenets, E.R.: Nonsignaling as the consistency condition for local quasi-classical probability modeling of a general multipartite correlation scenario. J. Phys. A 45, 185306 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Loubenets, E.R.: Context-invariant quasi hidden variable (qHV) modelling of all joint von Neumann measurements for an arbitrary Hilbert space. J. Math. Phys. 56, 032201 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Zohren, S., Gill, R.D.: Maximal violation of the Collins-Gisin-Linden-Massar-Popescu Inequality for infinite dimensional states. Phys. Rev. Lett. 100, 120406 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    Froissart, M.: Constructive generalization of Bell’s inequalities. Il Nuovo Cimento B 64, 241–251 (1981)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Barrett, J., Collins, D., Hardy, L., Kent, A., Popescu, S.: Quantum nonlocality, Bell inequalities and the memory loophole. Phys. Rev. A 66, 042111 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    Brunner, N., Gisin, N.: Partial list of bipartite Bell inequalities with four binary settings. Phys. Lett. A 372, 3162–3167 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Degorre, J., Kaplan, M., Laplante, S., Roland, J.: The communication complexity of non-signaling distributions. Lect. Notes Comput. Sci. 5734, 270–281 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Kolmogorov, A.N.: Grundbegriffe der Wahrscheinlichkeitsrechnung (Berlin: Springer, 1933); English translation: Foundations of the Theory of Probability. Chelsea, New York (1950)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations