# Theory of Stochastic Schrödinger Equation in Complex Vector Space

- 143 Downloads

## Abstract

A generalized Schrödinger equation containing correction terms to classical kinetic energy, has been derived in the complex vector space by considering an extended particle structure in stochastic electrodynamics with spin. The correction terms are obtained by considering the internal complex structure of the particle which is a consequence of stochastic average of particle oscillations in the zeropoint field. Hence, the generalised Schrödinger equation may be called stochastic Schrödinger equation. It is found that the second order correction terms are similar to corresponding relativistic corrections. When higher order correction terms are neglected, the stochastic Schrödinger equation reduces to normal Schrödinger equation. It is found that the Schrödinger equation contains an internal structure in disguise and that can be revealed in the form of internal kinetic energy. The internal kinetic energy is found to be equal to the quantum potential obtained in the Madelung fluid theory or Bohm statistical theory. In the rest frame of the particle, the stochastic Schrödinger equation reduces to a Dirac type equation and its Lorentz boost gives the Dirac equation. Finally, the relativistic Klein–Gordon equation is derived by squaring the stochastic Schrödinger equation. The theory elucidates a logical understanding of classical approach to quantum mechanical foundations.

### Keywords

Foundations of quantum mechanics Stochastic electrodynamics Zeropoint field Complex vector algebra### References

- 1.Boyer, T.H.: Random electrodynamics: the theory of classical electrodynamics with classical electromagnetic zeropoint radiation. Phys. Rev. D
**11**, 790–808 (1975)CrossRefADSGoogle Scholar - 2.Boyer, T.H.: A brief survey of stochastic electrodynamics. In: Barut, O.A. (ed.) Foundations of Radiation Theory and Quantum Electrodynamics, pp. 49–63. Springer, New York (1980)CrossRefGoogle Scholar
- 3.Cole, D.C.: Reviewing and extending some recent work on stochastic electrodynamics. In: Lakhtakia, A. (ed.) Essays on the Formal Aspects of Electromagnetic Theory, pp. 501–532. World Scientific Publ. Co., Singapore (1993)CrossRefGoogle Scholar
- 4.de la Peña, L., Cetto, A.M.: Quantum Dice: An Introduction to Stochastic Electrodynamics. Kluwer, Dordrecht (1996)CrossRefGoogle Scholar
- 5.Schrödinger, E.: Quantisation as a Problem of Proper Values (Part I). Collected Papers of Wave Mechanics, pp. 1–12. Blackie and Son, London (1928)Google Scholar
- 6.Fenyes, I.: Eine wahrscheinlichkeitstheoretische begründung und interpretation der quantenmechanik. Zeit. Phys.
**132**, 81 (1952)Google Scholar - 7.Nelson, E.: Quantum Fluctuations. Princeton University Press, Princeton (1985)MATHGoogle Scholar
- 8.Nelson, E.: Derivation of Schrödinger equation from Newtonian mechanics. Phys. Rev.
**150**, 1079–1085 (1966)CrossRefADSGoogle Scholar - 9.Della Riccia, G., Wiener, N.: Wave mechanics in classical phase space, Brownian motion, and quantum theory. J. Math. Phys.
**7**, 1372 (1966)MathSciNetCrossRefADSGoogle Scholar - 10.Favella, I.F.: Brownian motions in quantum mechanics. Ann. Inst. Henri Poincáre
**7**, 77 (1967)MATHGoogle Scholar - 11.de la Peña, L., Cetto, A.M.: Stochastic theory for classical and quantum mechanical systems. Found. Phys.
**5**, 355 (1975)MathSciNetCrossRefADSGoogle Scholar - 12.de la Peña-Auerback, L.: New formulation of stochastic theory and quantum mechanics. J. Math. Phys.
**10**, 1620–1630 (1969)CrossRefMATHADSGoogle Scholar - 13.de la Peña-Auerback, L.: Stochastic theory of quantum mechanics for particles with spin. J. Math. Phys.
**12**, 453–461 (1971)CrossRefADSGoogle Scholar - 14.de la Peña, L., Cetto, A.M., Hernández, A.V.: The Emerging Quantum: The Physics Behind Quantum Mechanics. Springer, Cham (2015)MATHGoogle Scholar
- 15.Cetto, A.M., de la Peña, L.: Specificity of Schrödinger equation. Quantum Stud. Math. Found.
**2**, 275–287 (2015)MathSciNetCrossRefMATHGoogle Scholar - 16.Cavalleri, G.: Schrödinger’s equation as a consequence of of zitterbewegung. Lett. Nuovo Cimento.
**43**, 285 (1985)MathSciNetCrossRefGoogle Scholar - 17.Cavalleri, G., Mauri, G.: Integral expansion often reducing the density gradient expansion, extended to non-Markov stochastic process: Consequent non-Markovian stochastic equation whose leading terms coincide with Schrödinger’s. Phys. Rev. B
**41**, 6751–6758 (1990)MathSciNetCrossRefADSGoogle Scholar - 18.Cavalleri, G., Zecca, A.: Interpretation of Schrödinger like equation derived from non-Markovian process. Phys. Rev. B
**43**, 3223–3227 (1991)CrossRefADSGoogle Scholar - 19.Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev.
**40**, 749 (1932)CrossRefMATHADSGoogle Scholar - 20.Dechoum, K., França, H.M., Malta, C.P.: Towards a classical reinterpretation of the Schrödinger equation according to stochastic electrodynamics. In: Amoroso, R.L., et al. (eds.) Gravitation and Cosmology: From the Hubble Radius to the Planck Scale, pp. 393–400. Kluwer, Dordrecht (2002)CrossRefGoogle Scholar
- 21.Faria, A.J., França, H.M., Gomes, G.G., Sponchiado, R.C.: The vacuum electromagnetic fields and the Schrödinger equation. Found. Phys.
**37**, 1296–1305 (2007)CrossRefMATHADSGoogle Scholar - 22.Dechoum, K., França, H.M., Malta, C.P.: Classical aspects of Pauli-Schrödinger equation. Phys. Lett. A
**248**, 93–102 (1998)MathSciNetCrossRefMATHADSGoogle Scholar - 23.Olavo, L.S.F.: Foundations of quantum mechanics: non-relativistic theory. Physica A
**262**, 197–214 (1999)MathSciNetCrossRefADSGoogle Scholar - 24.Olavo, L.S.F.: Foundations of quantum mechanics: Connection with stochastic processes. Phys. Rev. A
**61**, 052109-1–052109-14 (2000)CrossRefADSGoogle Scholar - 25.Hall, M.J.W., Reginatto, M.: Schrödinger equation from exact uncertainty principle. J. Phys. A
**35**, 3289–3303 (2002)MathSciNetCrossRefMATHADSGoogle Scholar - 26.Schleich, W.P., Greenberger, D.M., Kobe, D.H., Scully, M.O.: Schrödinger equation revisited. Proc. Natl. Acad. Sci. USA
**110**, 5374–5379 (2013)MathSciNetCrossRefMATHADSGoogle Scholar - 27.Schleich, W.P., Greenberger, D.M., Kobe, D.H., Scully, M.O.: A wave equation interpolating between classical and quantum mechanics. Phys. Scr.
**90**, 108009 (2015)CrossRefADSGoogle Scholar - 28.Grössing, G.: Sub-quantum thermodynamics as a basis of emergent quantum mechanics. Entropy
**12**, 1975–2044 (2010)MathSciNetCrossRefMATHADSGoogle Scholar - 29.Grössing, G.: The vacuum fluctuation theorem: exact Schrödinger equation via nonequilibrium thermodynamics. Phys. Let. A
**372**, 4556–4563 (2008)MathSciNetCrossRefMATHADSGoogle Scholar - 30.Grössing, G.: On the thermodynamic origin of quantum potential. Physica A
**388**, 811–823 (2009)MathSciNetCrossRefADSGoogle Scholar - 31.Sakurai, J.J.: Advanced Quantum Mechanics. Pearson Education, New Delhi (2007)Google Scholar
- 32.Barut, A.O., Bracken, A.J.: Zitterbewegung and the internal geometry of electron. Phys. Rev. D
**23**, 2454 (1981)MathSciNetCrossRefADSGoogle Scholar - 33.Bhabha, H.J., Corben, H.C.: General classical theory of spinning particles in a Maxwell’s field. Proc. R. Soc. Lond. A
**178**(974), 273–314 (1941)MathSciNetCrossRefMATHADSGoogle Scholar - 34.Corben, H.C.: Spin in classical and quantum theories. Phys. Rev.
**121**, 1833–1839 (1961)CrossRefMATHADSGoogle Scholar - 35.Corben, H.C.: Classical and Quantum Theories of Spinning Particles. Holden and Day, New York (1968)Google Scholar
- 36.Mathisson, M.: Neue mekhanik materietter system. Acta Phys. Pol.
**6**, 163–200 (1937)Google Scholar - 37.Barut, O.A., Zanghi, A.J.: Classical model of the dirac electron. Phys. Rev. Lett.
**52**, 2009–2012 (1984)MathSciNetCrossRefADSGoogle Scholar - 38.Salesi, G.: The spin and Madelung fluid. Mod. Phys. Lett. A
**11**, 1815–1853 (1996)MathSciNetCrossRefMATHADSGoogle Scholar - 39.Recami, E., Salesi, G.: Kinematics and hydrodynamics of spinning particles. Phys. Rev. A
**57**, 98–105 (1998)CrossRefMATHADSGoogle Scholar - 40.Salesi, G., Recami, E.: A veleocity field and operator for spinning particles in (nonrelativistic) quantum mechanics. Found. Phys.
**28**, 763–773 (1998)MathSciNetCrossRefADSGoogle Scholar - 41.Salesi, G., Recami, E.: Hydrodynamical reformulation and quantum limit of the Barut-Zanghi theory. Found. Phys. Lett.
**10**, 533–546 (1997)MathSciNetCrossRefMATHGoogle Scholar - 42.Pavšič, M., Recami, E., Rodrigues, W.A., Maccarrone, G.D., Raciti, F., Saleci, G.: Spin and electron structure. Phys. Lett. B
**318**, 481 (1993)MathSciNetCrossRefADSGoogle Scholar - 43.Muralidhar, K.: Complex vector formalism of harmonic oscillator in geometric algebra: particle mass, spin and dynamics in complex vector space. Found. Phys.
**44**, 265–295 (2014)MathSciNetCrossRefMATHADSGoogle Scholar - 44.Muralidhar, K.: Algebra of complex vectors and applications in electromagnetic theory and quantum mechanics. Mathematics
**3**, 781–842 (2015)CrossRefMATHGoogle Scholar - 45.Muralidhar, K.: Classical origin of quantum spin. Apeiron
**6**, 146–160 (2011)Google Scholar - 46.Muralidhar, K.: The spin bivector and zeropoint energy in geometric algebra. Adv. Stud. Theor. Phys.
**6**, 675–686 (2012)Google Scholar - 47.Hestenes, D.: Zitterbewegung in quantum mechanics. Found. Phys.
**40**, 1–54 (2010)MathSciNetCrossRefMATHADSGoogle Scholar - 48.Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables I. Phys. Rev.
**85**, 166–179 (1952)MathSciNetCrossRefMATHADSGoogle Scholar - 49.Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables II. Phys. Rev.
**85**, 180–193 (1952)MathSciNetCrossRefMATHADSGoogle Scholar - 50.Muralidhar, K.: Classical approach to quantum condition and biaxial spin connection to the Schrödinger equation. Quantum Stud. Math. Found.
**3**, 31–39 (2016)MathSciNetCrossRefMATHGoogle Scholar - 51.Hestenes, D.: Spin and uncertainty in the interpretation of quantum mechanics. Am. J. Phys.
**47**, 399–415 (1979)MathSciNetCrossRefADSGoogle Scholar - 52.Snyder, H.S.: Quantized space-time. Phys. Rev.
**71**, 38–41 (1947)MathSciNetCrossRefMATHADSGoogle Scholar - 53.Kempf, A., Mangano, G., Mann, R.B.: Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D
**52**, 1108 (1995)MathSciNetCrossRefADSGoogle Scholar - 54.Hestenes, D.: Oersted medal lecture 2002: Reforming the mathematical language of physics. Am. J. Phys.
**71**, 104 (2003)CrossRefADSGoogle Scholar - 55.Hestenes, D.: Space-Time Algebra. Gordon and Breach Science Publishers, New York (1966)MATHGoogle Scholar
- 56.Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003)CrossRefMATHGoogle Scholar