Foundations of Physics

, Volume 47, Issue 4, pp 490–504 | Cite as

Time Symmetric Quantum Mechanics and Causal Classical Physics ?

Article
  • 232 Downloads

Abstract

A two boundary quantum mechanics without time ordered causal structure is advocated as consistent theory. The apparent causal structure of usual “near future” macroscopic phenomena is attributed to a cosmological asymmetry and to rules governing the transition between microscopic to macroscopic observations. Our interest is a heuristic understanding of the resulting macroscopic physics.

Keywords

Hanbury-Brown Twiss interferometry Quantum statistical BE correlations Two boundary quantum mechanics Microscopic and macroscopic causality structure Cosmology and the time arrow 

Notes

Acknowledgements

We thank David Craig, Claus Kiefer and Wolfgang Schleich for help in pointing out relevant literature.

References

  1. 1.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)CrossRefMATHADSGoogle Scholar
  2. 2.
    Schrödinger, E.: Der stetige Übergang von der Mikro- zur Makromechanik. Naturwissenschaften 14, 664–666 (1926)CrossRefMATHADSGoogle Scholar
  3. 3.
    Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 823–828 (1935)CrossRefMATHADSGoogle Scholar
  4. 4.
    Wigner, E.P.: Remarks on the Mind Body Question, in “The Scientist Speculates”. Heinmann, London (1961)Google Scholar
  5. 5.
    Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48, 696 (1935)CrossRefMATHADSGoogle Scholar
  6. 6.
    Bell, J.S., et al.: On the einstein-podolsky-rosen paradox. Physics 1, 195 (1964)Google Scholar
  7. 7.
    Mermin, N.D.: What is quantum mechanics trying to tell us? Am. J. Phys. 66, 753–767 (1998)CrossRefADSGoogle Scholar
  8. 8.
    Barrett, J.A.: The Quantum Mechanics of Minds and Worlds. Oxford University Press, Oxford (1999)Google Scholar
  9. 9.
    Friebe, C., Kuhlmann, M., Lyre, H., Näger, P., Passon, O., Stöckler, M.: Philosophie der Quantenphysik: Einführung und Diskussion der zentralen Begriffe und Problemstellungen der Quantentheorie für Physiker und Philosophen. Springer, Berlin (2014)MATHGoogle Scholar
  10. 10.
    Brown, R.H., Twiss, R.Q.: Interferometry of the intensity fluctuations in light. I. Basic theory: the correlation between photons in coherent beams of radiation. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 242. The Royal Society (1957)Google Scholar
  11. 11.
    Aharonov, Y., Bergmann, P.G., Lebowitz, J.L.: Time symmetry in the quantum process of measurement. Phys. Rev. 134, B1410 (1964)MathSciNetCrossRefMATHADSGoogle Scholar
  12. 12.
    Aharonov, Y., Rohrlich, D.: Quantum Paradoxes: Quantum Theory for the Perplexed. Wiley, Berlin (2008)MATHGoogle Scholar
  13. 13.
    Gell-Mann, M., Hartle, J.B.: Time symmetry and asymmetry in quantum mechanics and quantum cosmology. Phys. Orig. Time Asymmetry 1, 311–345 (1994)ADSGoogle Scholar
  14. 14.
    Wheeler, J.A., Zurek, W.H., Ballentine, L.E.: Quantum theory and measurement. Am. J. Phys. 52, 955–955 (1984)CrossRefADSGoogle Scholar
  15. 15.
    Wheeler, J.A., Zurek, W.H.: Quantum Theory and Measurement. Princeton 1University Press, Princeton (2014)Google Scholar
  16. 16.
    Hellmuth, T., Walther, H., Zajonc, A., Schleich, W.: Delayed-choice experiments in quantum interference. Phys. Rev. A 35, 2532 (1987)CrossRefADSGoogle Scholar
  17. 17.
    Ma, X.-S., Kofler, J., Zeilinger, A.: Delayed-choice gedanken experiments and their realizations, arXiv preprint arXiv:1407.2930 (2014)
  18. 18.
    Bopp, F.W.: Strings and Hanbury-Brown-Twiss Correlations in hadron physics, Theoretisch-Physikalischen Kolloquium der Universität Ulm (2001)Google Scholar
  19. 19.
    Kittel, W., De Wolf, E.A.: Soft Multihadron Dynamics. World Scientific, Singapore (2005)CrossRefGoogle Scholar
  20. 20.
    Quabis, S., Dorn, R., Eberler, M., Glöckl, O., Leuchs, G.: Focusing light to a tighter spot. Opt. Commun. 179, 1–7 (2000)CrossRefADSGoogle Scholar
  21. 21.
    Sondermann, M., Maiwald, R., Konermann, H., Lindlein, N., Peschel, U., Leuchs, G.: Design of a mode converter for efficient light-atom coupling in free space. Appl. Phys. B 89, 489–492 (2007)CrossRefADSGoogle Scholar
  22. 22.
    Drexhage, K.H.: Interaction of light with monomolecular dye layers. Prog. Opt. 12, 163–232 (1974)Google Scholar
  23. 23.
    Walther, H., Varcoe, B.T., Englert, B.-G., Becker, T.: Cavity quantum electrodynamics. Rep. Prog. Phys. 69, 1325 (2006)CrossRefADSGoogle Scholar
  24. 24.
    de Broglie, L.: La structure atomique de la matière et du rayonnement et la méchanique ondulatoire. Comptes Rendus de l’Académie des Sci. 184, 273–274 (1927)MATHGoogle Scholar
  25. 25.
    Bohm, D., Aharonov, Y.: Discussion of experimental proof for the paradox of Einstein, Rosen, and Podolsky. Phys. Rev. 108, 1070 (1957)MathSciNetCrossRefADSGoogle Scholar
  26. 26.
    Dürr, D., Teufel, S.: Bohmian Mechanics. Springer, Berlin (2009)MATHGoogle Scholar
  27. 27.
    Sakurai, J.J., Napolitano, J.J.: Modern Quantum Mechanics. Pearson Higher Ed, Upper Saddle River (2014)Google Scholar
  28. 28.
    Ritz, W.: Über die Grundlagen der Elektrodynamik un die Theorie der schwarzen Strahlung. Phys. Z. 9, 903–907 (1908)MATHGoogle Scholar
  29. 29.
    Tetrode, H.: über den Wirkungszusammenhang der Welt. Eine Erweiterung der klassischen Dynamik. Z. Phys. A Hadrons Nucl. 10, 317–328 (1922)Google Scholar
  30. 30.
    Frenkel, J.: Zur elektrodynamik punktfoermiger elektronen. Z. Phys. 32, 518–534 (1925)CrossRefMATHADSGoogle Scholar
  31. 31.
    Feynman, R.P.: Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367 (1948)MathSciNetCrossRefADSGoogle Scholar
  32. 32.
    Ritz, W., Einstein, A.: Zum gegenwärtigen stand des strahlungsproblems. Phys. Z. 10, 323–324 (1909)MATHGoogle Scholar
  33. 33.
    Zeh, H.D.: The Physical Basis of the Direction of Time. Springer, Berlin (2001)CrossRefMATHGoogle Scholar
  34. 34.
    Andersson, B., Hofmann, W.: Bose-Einstein correlations and color strings. Phys. Lett. B 169, 364–368 (1986)CrossRefADSGoogle Scholar
  35. 35.
    Metzger, W., Novák, T., Csörgő, T., Kittel, W.: Bose-Einstein correlations and the Tau-model. arXiv preprint arXiv:1105.1660 (2011)
  36. 36.
    Haken, H.: Laser Light Dynamics, vol. 2. North-Holland, Amsterdam (1985)Google Scholar
  37. 37.
    Schulman, L.S.: Time’s Arrows and Quantum Measurement. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  38. 38.
    Price, H.: Does time-symmetry imply retrocausality? How the quantum world says Maybe? Stud. Hist. Philos. Sci. B 43, 75 (2012)MathSciNetMATHGoogle Scholar
  39. 39.
    Aharonov, Y., Popescu, S., Tollaksen, J.: A time-symmetric formulation of quantum mechanics. Phys. Tod. 63(11), 27–32 (2010)Google Scholar
  40. 40.
    Miller, D.J.: Realism and time symmetry in quantum mechanics. Phys. Lett. A 222, 31–36 (1996)MathSciNetCrossRefMATHADSGoogle Scholar
  41. 41.
    Reznik, B., Aharonov, Y.: Time-symmetric formulation of quantum mechanics. Phys. Rev. A 52, 2538 (1995)MathSciNetCrossRefADSGoogle Scholar
  42. 42.
    Goldstein, S., Tumulka, R.: Opposite arrows of time can reconcile relativity and nonlocality. Class. Quantum Gravity 20, 557 (2003)MathSciNetCrossRefMATHADSGoogle Scholar
  43. 43.
    t’Hooft, G.: Quantization of discrete deterministic theories by Hilbert space extension. Nucl. Phys. B 342, 471–485 (1990)MathSciNetCrossRefADSGoogle Scholar
  44. 44.
    Everett III, H.: “Relative state” formulation of quantum mechanics. Rev. Mod. Phys. 29, 454 (1957)MathSciNetCrossRefADSGoogle Scholar
  45. 45.
    Bopp, F. (senior): Werner Heisenberg und die Physik unserer Zeit. Vieweg, Braunschweig (1961)Google Scholar
  46. 46.
    Aharonov, Y., Cohen, E., Elitzur, A.C.: Foundations and applications of weak quantum measurements. Phys. Rev. A 89, 052105 (2014a)CrossRefADSGoogle Scholar
  47. 47.
    Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)MathSciNetCrossRefMATHADSGoogle Scholar
  48. 48.
    Joos, E., Zeh, H.D., Kiefer, C., Giulini, D.J., Kupsch, J., Stamatescu, I.-O.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Berlin (2013)MATHGoogle Scholar
  49. 49.
    Zeh, H.D.: There are no quantum jumps, nor are there particles!. Phys. Lett. A 172, 189–192 (1993)MathSciNetCrossRefADSGoogle Scholar
  50. 50.
    Kiefer, C.: Zeitpfeil und Quantumgravitation, Physikalisches Kolloquium der Universität Siegen (2008)Google Scholar
  51. 51.
    Aharonov, Y., Cohen, E., Gruss, E., Landsberger, T.: Measurement and collapse within the two-state vector formalism. Quantum Stud. 1, 133–146 (2014b)CrossRefMATHGoogle Scholar
  52. 52.
    Gold, T.: The Nature of Time. Cornell University Press, Ithaca (1967)MATHGoogle Scholar
  53. 53.
    Cramer, J.G.: The transactional interpretation of quantum mechanics. Rev. Mod. Phys. 58, 647 (1986)MathSciNetCrossRefADSGoogle Scholar
  54. 54.
    Bohr, N.: Die Physik und das Problem des Lebens. Vieweg, Braunschweig (1958)Google Scholar
  55. 55.
    Conway, J., Kochen, S.: The free will theorem. Found. Phys. 36, 1441–1473 (2006)MathSciNetCrossRefMATHADSGoogle Scholar
  56. 56.
    Kastner, R.: “The born rule and free will”, (2016), contribution to an edited collection by C. de Ronde et alGoogle Scholar
  57. 57.
    Marsaglia, G., Zaman, A., Tsang, W.W.: Toward a universal random number generator. Stat. Probab. Lett. 9, 35–39 (1990)MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    t’Hooft, G.: Black hole unitarity and antipodal entanglement, arXiv:1601.03447 [gr-qc] (2016)
  59. 59.
    Craig, D.A.: Observation of the final boundary condition: extragalactic background radiation and the time symmetry of the universe. Ann. Phys. 251, 384–425 (1996)CrossRefMATHADSGoogle Scholar
  60. 60.
    Wheeler, J.A., Feynman, R.P.: Interaction with the absorber as the mechanism of radiation. Rev. Mod. Phys. 17, 157 (1945)CrossRefADSGoogle Scholar
  61. 61.
    Süssmann, G.: Die spontane Lichtemission in der unitären Quantenelektrodynamik. Z. Phys. 131, 629–662 (1952)CrossRefMATHADSGoogle Scholar
  62. 62.
    Bopp, F.W.: Novel ideas about emergent vacua. Acta Phys. Polon. B 42, 1917 (2011a). arXiv:1010.4525 [hep-ph]CrossRefGoogle Scholar
  63. 63.
    Bopp, F. W.: Novel ideas about emergent vacua and Higgs-like particles. In: Hadron structure. Proceedings, 5th Joint International Conference, Hadron Structure’11, HS’11, Tatranska Strba, Slovakia, June 27–July 1, 2011, Nuclear Physics Proceedings Supplements, Vol. 219–220, p. 259 (2011b)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.University of SiegenSiegenGermany

Personalised recommendations