Skip to main content
Log in

An Uncertainty Relation for the Orbital Angular Momentum Operator

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A common reducible representation space of the Lie algebras su(1, 1) and su(2) is equipped with two different types of scalar products. The representation bases are labeled by the azimuthal and magnetic quantum numbers. The generators of su(2) are the x-, y- and z-components of the orbital angular momentum operator. The representation of each of these Lie algebras is unitary with respect to only one of the scalar products. To each positive magnetic quantum number a family of the su(1, 1)-Barut–Girardello coherent states is associated. The normalization and resolution of the identity condition for the coherent states are realized in two different approaches, i.e. the unitary and the non-unitary approaches. For the coherent states of the non-unitary case we calculate the uncertainty relation for the Hermitian x- and y-components of the angular momentum operator. While the unitary case leads to the known uncertainty relation for the Hermitian x- and y-components of su(1, 1) Lie algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Roy, C.L., Sannigrahi, A.B.: Uncertainty relation between angular momentum and angle variable. Am. J. Phys. 47, 965 (1979)

    Article  ADS  Google Scholar 

  2. Pereira, T., Marchetti, D.H.U.: Quantum states allowing minimum uncertainty product of \(\phi \) and \(L_z\). Progr. Theor. Phys. 122, 1137 (2009)

    Article  ADS  MATH  Google Scholar 

  3. Franke-Arnold, S., Barnett, S.M., Yao, E., Leach, J., Courtial, J., Padgett, M.: Uncertainty principle for angular position and angular momentum. New J. Phys. 6, 103 (2004)

    Article  ADS  Google Scholar 

  4. Pegg, D.T., Barnett, S.M., Zambrini, R., Franke-Arnold, S., Padgett, M.: Minimum uncertainty states of angular momentum and angular position. New J. Phys. 7, 000 (2005)

    Article  MathSciNet  Google Scholar 

  5. Goette, J.B., Zambrini, R., Franke-Arnold, S., Barnett, S.M.: Large-uncertainty intelligent states for angular momentum and angle. J. Opt. B. 7, S563 (2005)

    Article  ADS  Google Scholar 

  6. Dammeier, L., Schwonnek, R., Werner, R.F.: Uncertainty relations for angular momentum. New J. Phys. 17, 093046 (2015)

    Article  ADS  Google Scholar 

  7. Townsend, J.S.: A Modern Approach to Quantum Mechanics. University Science Books, Sausalito (2000)

    Google Scholar 

  8. Barut, A.O., Girardello, L.: New coherent states associated with non-compact groups. Commun. Math. Phys. 21, 41 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Gerry, C.C.: Application of \(SU(1,1)\) coherent states to the interaction of squeezed light in an anharmonic oscillator. Phys. Rev. A 35, 2146 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  10. Ban, M.: Superpositions of the \(SU(1,1)\) coherent states. Phys. Lett. A 193, 121 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Brif, C., Vourdas, A., Mann, A.: Analytic representations based on \(SU(1,1)\) coherent states and their applications. J. Phys. A 29, 5873 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Wang, X.-G., Sanders, B.C., Pan, S.-H.: Entangled \(SU(2)\) and \(SU(1,1)\) coherent states. J. Phys. A 33, 7451 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Gerry, C.C., Benmoussa, A.: Two-mode coherent states for \(SU(1,1)\otimes SU(1,1)\). Phys. Rev. A 62, 033812 (2000)

    Article  ADS  Google Scholar 

  14. Fujii, K.: Introduction to coherent states and quantum information theory. arXiv:quant-ph/0112090, prepared for 10th Numazu Meeting on Integral System, Noncommutative Geometry and Quantum Theory, Numazu, Shizuoka, Japan, 7–9 Mai 2002

  15. Fakhri, H.: \(su(1,1)\)-Barut-Girardello coherent states for Landau levels. J. Phys. A 37, 5203 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Dong, S.-H., Lozada-Cassou, M.: Exact solutions, ladder operators and Barut-Girardello coherent states for a harmonic oscillator plus an inverse square potential. Int. J. Mod. Phys. B 19, 4219 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Cirilo-Lombardo, D.J.: Non-compact groups, coherent states, relativistic wave equations and the harmonic oscillator. Found. Phys. 37, 919 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Dong, S.-H.: Factorization Method in Quantum Mechanics. Springer, The Netherlands (2007)

    MATH  Google Scholar 

  19. Gazeau, J.-P.: Coherent States in Quantum Physics. Wiley-VCH, Weinheim (2009)

    Book  Google Scholar 

  20. Fakhri, H., Mojaveri, B.: Landau levels as a limiting case of a model with the Morse-like magnetic field. Rep. Math. Phys. 66, 299 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Popov, D., Pop, N., Chiritoiu, V., Luminosu, I., Costache, M.: Generalized Barut-Girardello coherent states for mixed states with arbitrary distribution. Int. J. Theor. Phys. 49, 661 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Popov, D., Dong, S.-H., Pop, N., Sajfert, V., Simon, S.: Construction of the Barut-Girardello quasi coherent states for the Morse potential. Ann. Phys. 339, 122 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  23. Aremua, I., Hounkonnou, M.N., Baloitcha, E.: Coherent states for Landau levels: algebraic and thermodynamical properties. arXiv:1301.6280

  24. Biedenharn Jr, L.C., Holman III, W.J.: Complex angular momenta and the groups \(SU(1,1)\) and \(SU(2)\). Ann. Phys. 39, 1 (1966)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Gilmore, R.: Lie Groups, Physics and Geometry: An Introduction for Physicists, Engineers and Chemists. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  26. Rose, M.E.: Elementary Theory of Angular Momentum. Wiley, New York (1957)

    MATH  Google Scholar 

  27. Edmonds, A.R.: Angular Momentum in Quantum Mechanics. Princeton University Press, New Jersey (1957)

    MATH  Google Scholar 

  28. Wang, Z.X., Guo, D.R.: Special Functions. World Scientific, Singapore (1989)

    Book  Google Scholar 

  29. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic, San Diego (2000)

    MATH  Google Scholar 

  30. Fakhri, H.: A Weil representation of \(sp(4)\) realized by differentail operators in the space of smooth functions on \(S^2\times S^1\). J. Nonlinear Math. Phys. 17, 137 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Fakhri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhri, H., Sayyah-Fard, M. An Uncertainty Relation for the Orbital Angular Momentum Operator. Found Phys 46, 1062–1073 (2016). https://doi.org/10.1007/s10701-016-9988-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-016-9988-8

Keywords

Navigation