Skip to main content
Log in

Inflation and Late Time Acceleration Designed by Stueckelberg Massive Photon

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We present a mini review of the Stueckelberg mechanism, which was proposed to make the abelian gauge theories massive as an alternative to Higgs mechanism, within the framework of Minkowski as well as curved spacetimes. The higher the scale the tighter the bounds on the photon mass, which might be gained via the Stueckelberg mechanism, may be signalling that even an extremely small mass of the photon which cannot be measured directly could have far reaching effects in cosmology. We present a cosmological model where Stueckelberg fields, which consist of both scalar and vector fields, are non-minimally coupled to gravity and the universe could go through a decelerating expansion phase sandwiched by two different accelerated expansion phases. We discuss also the possible anisotropic extensions of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Weinberg, S.: Conceptual foundations of the unified theory of weak and electromagnetic interactions. Review of Modern Physics 52, 515 (1980). Science 210, 1212 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Feldman, G., Matthews, P.T.: Massive electrodynamics. Phys. Rev. Lett. 130, 1633 (1963)

    ADS  MathSciNet  Google Scholar 

  3. Itzykson, C., Zuber, J.B.: Quantum Field Theory. McGraw-Hill, New York (1980)

    MATH  Google Scholar 

  4. Okun, L.B.: The problem of mass: from Galilei to Higgs. In: Proceedings of Physics at the Highest Energy and Luminosity to Understand the Origin of Mass. Moscow Institute for Theoretical and Experimental Physics, Moscow (1991)

  5. Okun, L.B.: Photon: history, mass, charge. Acta Phys. Pol. B 37, 565 (2006). arXiv:hep-ph/0602036

    ADS  Google Scholar 

  6. Einstein, A.: Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys. 322, 132 (1905)

    Article  MATH  Google Scholar 

  7. Einstein, A.: Zur Quantentheorie der Strahlung. Physikalische Zeitschrzft 18, 121 (1917)

    ADS  Google Scholar 

  8. de Broglie, L.: Rayonnement noir et quanta de lumière. J. Phys. Radium 3, 422 (1922)

    Article  Google Scholar 

  9. de Broglie, L.: Ondes et quanta. C. R. Acad. Sci. 177, 507 (1923)

    Google Scholar 

  10. de Broglie, L.: Nouvelles recherches sur la lumière. Hermann, Paris (1936)

    MATH  Google Scholar 

  11. de Broglie, L.: La mécanique ondulatoire du photon. Une nouvelle théorie de la lumière. Hermann, Paris (1940)

    MATH  Google Scholar 

  12. de Broglie, L., Vigier, J.P.: Photon mass and new experimental results on longitudinal displacements of laser beams near total reflection. Phys. Rev. Lett. 28, 1001 (1972)

    Article  ADS  Google Scholar 

  13. Bass, L., Schrödinger, E.: Must the photon mass be zero? Proc. R. Soc. A 232, 1 (1955)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. de Broglie, L.: Recherches sur la théorie des quantas. Université de Paris-Sorbonne, Paris (1924)

    Google Scholar 

  15. Proca, A.: Sur la théorie ondulatoire des électrons positifs et négatifs. J. Phys. Radium 7, 347 (1936)

    Article  MATH  Google Scholar 

  16. Proca, A.: Sur les photons et les particules charge pure. C. R. Acad. Sci. 203, 709 (1936)

    MATH  Google Scholar 

  17. Proca, A.: Sur la théorie du positon, vol. 202. Comptes rendus hebdomadaires des séances de l’Académie des Sciences, Paris, p. 1366 (1936)

  18. Proca, A.: Sur les equations fondamentales des particules elementaires. C. R. Acad. Sci. 202, 1490 (1936)

    MATH  Google Scholar 

  19. Proca, A.: Particules libres photons et particules charge pure. J. Phys. Radium 8, 23 (1937)

    Article  MATH  Google Scholar 

  20. Proca, A., Proca, G.A.: Alexandre Proca 1897–1955: Oeuvre scientifique publiée. Editions Georges A. Proca, Paris (1988)

    Google Scholar 

  21. Borne, T., Lochak, G., Stumpf, H.: Quantum Field Theory and the Structure of Matter. Springer, Berlin (2001)

    MATH  Google Scholar 

  22. Stueckelberg, E.C.G.: Théorie de la radiation de photons de masse arbitrairement petite. Helv. Phys. Acta 30, 209 (1957)

    MathSciNet  MATH  Google Scholar 

  23. Ruegg, H., Altaba, M.R.: The Stueckelberg field. Int. J. Mod. Phys. A 19, 3295 (2004). arXiv:hep-th/0304245

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Lowenstein, J.H., Schroer, B.: Gauge invariance and Ward identities in a massive vector meson model. Phys. Rev. D 6, 54 (1972)

    Article  Google Scholar 

  25. van Hees, H.: The renormalizability for massive Abelian gauge field theories re-visited (2003). arXiv:hep-th/0305076

  26. Kibble, T.W.: Broken symmetries. In: Proceedings of International Conference on High Energy Physics. Oxford University Press, Oxford (1965)

  27. Taylor, J.C.: Gauge Theories of Weak Interactions. Cambridge University Press, Cambridge (1976)

    Google Scholar 

  28. Pauli, W.: Relativistic field theories of elementary particles. Rev. Mod. Phys. 13, 203 (1941)

    Article  ADS  MATH  Google Scholar 

  29. Delbourgo, R.: A supersymmetric Stueckelberg formalism. J. Phys. G 8, 800 (1975)

    Article  ADS  Google Scholar 

  30. Guerdane, M., Lagraa, M.: Canonical quantization of the massive vector supermultiplet-an example of higher-order derivative model. Zeitschrift für Physik 51, 675 (1991)

    MathSciNet  Google Scholar 

  31. Deser, S., Van Nieuwenhuizen, P.: One-loop divergences of quantized Einstein-Maxwell fields. Phys. Rev. D 10, 401 (1974)

    Article  ADS  Google Scholar 

  32. Stelle, K.S.: Renormalization of higher-derivative quantum gravity. Phys. Rev. D 16, 953 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  33. Sezgin, E., Van Nieuwenhuizen, P.: New ghost-free gravity Lagrangians with propagating torsion. Phys. Rev. D 21, 3269 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  34. Bergshoeff, E., Kallosh, R.: BRST quantization of the Green-Schwarz superstring. Nucl. Phys. B 333, 605 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  35. Fisch, J.M.L., Henneaux, M.: A note on the covariant BRST quantization of the superparticle. ULB-TH2/89-04-REV (1989)

  36. Bergshoeff, E., Kallosh, R.: Unconstrained BRST for superparticles. Phys. Lett. B 240, 105 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  37. Delbourgo, R., Salam, A.: The Stueckelberg formalism for spin two. Nuovo Cimento 12, 297 (1975)

    Google Scholar 

  38. Arkani-Hamed, N., Georgi, H., Schwartz, M.D.: Effective field theory for massive gravitons and gravity in theory space. Ann. Phys. 305, 96 (2003). arXiv:hep-th/0210184

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Kalb, M., Ramond, P.: Classical direct interstring action. Phys. Rev. D 9, 2273 (1974)

    Article  ADS  Google Scholar 

  40. Marshall, C., Ramond, P.: Field theory of the interacting string: the closed string. Nucl. Phys. B 85, 375 (1975)

    Article  ADS  Google Scholar 

  41. Van Dam, H., Veltman, M.: Massive and massless Yang-Mills and gravitational fields. Nucl. Phys. B 22, 397 (1970)

    Article  ADS  Google Scholar 

  42. Zakharov, V.I.: Linearized gravitation theory and the graviton mass. JETP Lett. 12, 312 (1970)

    ADS  Google Scholar 

  43. Boulware, D.G., Deser, S.: Can gravitation have a finite range? Phys. Rev. D 6, 3368 (1972)

    Article  ADS  Google Scholar 

  44. Kogan, I.I., Mouslopoulos, S., Papazoglou, A.: The \(m \rightarrow 0\) limit for massive graviton in \(dS_4\) and \(AdS_4\) How to circumvent the van Dam-Veltman-Zakharov discontinuity. Phys. Lett. B 503, 173 (2001). arXiv:hep-th/0011138

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Porrati, M.: No Van Dam-Veltman-Zakharov discontinuity in AdS space. Phys. Lett. B 498, 92 (2001). arXiv:hep-th/0011152

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Hinterbichler, K.: Theoretical aspects of massive gravity. Rev. Mod. Phys. 84, 671 (2012). arXiv:1105.3735 [hep-th]

    Article  ADS  Google Scholar 

  47. Belokogne, A., Folacci, A.: Stueckelberg massive electromagnetism in curved spacetime: Hadamard renormalization of the stress-energy tensor and the Casimir effect. Phys. Rev. D 93, 044063 (2016). arXiv:1512.06326 [gr-qc]

  48. Glavan, D., Prokopec, T., Prymidis, V.: Backreaction of a massless minimally coupled scalar field from inflationary quantum fluctuations. Phys. Rev. D 89(2), 024024 (2014). arXiv:1308.5954 [gr-qc]

  49. Glavan, D., Prokopec T., Takahashi T.: Late-time quantum backreaction of a very light non-minimally coupled scalar. Phys. Rev. D 94, 084053 (2016). arXiv:1512.05329 [gr-qc]

  50. Prokopec, T., Törnkvist, O., Woodard, R.P.: Photon mass from inflation. Phys. Rev. Lett. 89, 101301 (2002). arXiv:astro-ph/0205331

    Article  ADS  Google Scholar 

  51. Prokopec, T., Törnkvist, O., Woodard R.P.: One loop vacuum polarization in a locally de Sitter background. Ann. Phys. 303, 251 (2003). arXiv:gr-qc/0205130

  52. Prokopec, T., Woodard, R.P.: Vacuum polarization and photon mass in inflation. Am. J. Phys. 72, 60 (2004). arXiv:astro-ph/0303358

    Article  ADS  MATH  Google Scholar 

  53. Chimento, L.P., Cossarini, A.E.: Energy-momentum tensor renormalization for vector fields in Robertson-Walker backgrounds. Phys. Rev. D 41, 3101 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  54. Fröb, M.B., Higuchi, A.: Mode-sum construction of the two-point functions for the Stueckelberg vector fields in the Poincare patch of de Sitter space. J. Math. Phys. 55, 062301 (2014). arXiv:1305.3421 [gr-qc]

  55. Akarsu, Ö., Arık, M., Katırcı, N., et al.: Accelerated expansion of the Universe à la the Stueckelberg mechanism. J. Cosmol. Astropart. Phys. 1407, 009 (2014). arXiv:1404.0892 [gr-qc]

  56. Kouwn, S., Oh, P., Park, C.G.: Massive photon and dark energy. Phys. Rev. D 93, 083012 (2016). arXiv:1512.00541 [gr-qc]

  57. Belokogne, A., Folacci, A., Queva, J.: Stueckelberg massive electromagnetism in de Sitter and anti-de Sitter spacetimes: two-point functions and renormalized stress-energy tensors (2016). arXiv:1610.00244 [gr-qc]

  58. Kostelecky, V.A., Potting, R.: CPT and strings. Nucl. Phys. B 359, 545 (1991)

    Article  ADS  Google Scholar 

  59. Kostelecky, V.A., Samuel, S.: Photon and graviton masses in string theories. Phys. Rev. Lett. 66, 1811 (1991)

    Article  ADS  Google Scholar 

  60. Goldhaber, A.S., Nieto, M.M.: Photon and graviton mass limits. Rev. Mod. Phys. 82, 939 (2010). arXiv:0809.1003 [hep-ph]

    Article  ADS  Google Scholar 

  61. Williams, E.R., Faller, J.E., Hill, H.A.: New experimental test of Coulomb’s law: a laboratory upper limit on the photon rest mass. Phys. Rev. Lett. 26, 721 (1971)

    Article  ADS  Google Scholar 

  62. Fischbach, E., Kloor, H., Langel, R.A., et al.: New geomagnetic limits on the photon mass and on long-range forces coexisting with electromagnetism. Phys. Rev. Lett. 73, 514 (1994)

    Article  ADS  Google Scholar 

  63. Davis Jr., L., Goldhaber, A.S., Nieto, M.M.: Limit on the photon mass deduced from Pioneer-10 observations of Jupiter’s Magnetic Field. Phys. Rev. Lett. 35, 1402 (1975)

    Article  ADS  Google Scholar 

  64. Ryutov, D.D.: The role of finite photon mass in magnetohydrodynamics of space plasmas. Plasma Phys. Control. Fusion 39, A73 (1997)

    Article  ADS  Google Scholar 

  65. Eidelman, S., et al.: [Particle Data Group Collaboration]: Review of particle physics. Phys. Lett. B 592, 1 (2004)

    Article  ADS  Google Scholar 

  66. Ryutov, D.D.: Using plasma physics to weigh the photon. Plasma Phys. Control. Fusion 49, B429 (2007)

    Article  ADS  Google Scholar 

  67. Amsler, C., et al.: [Particle Data Group Collaboration]: Review of particle physics. Phys. Lett. B 667, 1 (2008)

    Article  ADS  Google Scholar 

  68. Patrignani, C., et al.: [Particle Data Group Collaboration]: Review of particle physics. Chin. Phys. C 40, 100001 (2016)

    Article  ADS  Google Scholar 

  69. Retinò, A., Spallicci, A.D.A.M., Vaivads, A.: Solar wind test of the de Broglie-Proca massive photon with cluster multi-spacecraft data. Astropart. Phys. 82, 49 (2016). arXiv:1302.6168 [hep-ph]

    Article  ADS  Google Scholar 

  70. Bonetti, L., Ellis, J., Mavromatos, N.E., et al.: Photon mass limits from fast radio bursts. Phys. Lett. B 757, 548 (2016). arXiv:1602.09135 [astro-ph.HE]

    Article  ADS  Google Scholar 

  71. Chibisov, G.V.: Astrophysical upper limits on the photon rest mass. Phys. Usp. 19, 624 (1976)

    Article  ADS  Google Scholar 

  72. Lakes, R.: Experimental limits on the photon mass and cosmic magnetic vector potential. Phys. Rev. Lett. 80, 1826 (1998)

    Article  ADS  Google Scholar 

  73. Adelberger, E., Dvali, G., Gruzinov, A.: Photon-mass bound destroyed by vortices. Phys. Rev. Lett. 98, 010402 (2007). arXiv:hep-ph/0306245

    Article  ADS  Google Scholar 

  74. Goldhaber, A.S., Nieto, M.M.: Terrestrial and extraterrestrial limits on the photon mass. Rev. Mod. Phys. 43, 277 (1971)

    Article  ADS  Google Scholar 

  75. Wu, X.F., Zhang, S.B., Gao, H.: Constraints on the photon mass with fast radio bursts. Astrophys. J. 822, L15 (2016). arXiv:1602.07835 [astro-ph.HE]

    Article  ADS  Google Scholar 

  76. Bentum, M., Bonetti, L., Spallicci, A.D.A.M.: Dispersion by pulsars, magnetars and massive electromagnetism at very low radio frequencies. Adv. Space Res. doi:10.1016/j.asr.2016.10.018. arXiv:1607.08820 [astro-ph.IM]

  77. Lowenthal, D.D.: Limits on the photon mass. Phys. Rev. D 8, 2349 (1973)

    Article  ADS  Google Scholar 

  78. Tu, L.C., Luo, J., Gillies, G.T.: The mass of the photon. Rep. Prog. Phys. 68, 77 (2005)

    Article  ADS  Google Scholar 

  79. Spavieri, G., Quintero, J., Gillies, G.T., et al.: A survey of existing and proposed classical and quantum approaches to the photon mass. Eur. Phys. J. D 61, 531 (2011)

    Article  ADS  Google Scholar 

  80. Heeck, J.: How stable is the photon? Phys. Rev. Lett. 111, 021801 (2013). arXiv:1304.2821 [hep-ph]

    Article  ADS  Google Scholar 

  81. Carroll, S.M., Field, G.B., Jackiw, R.: Limits on a Lorentz and parity violating modification of electrodynamics. Phys. Rev. D 41, 1231 (1990)

    Article  ADS  Google Scholar 

  82. Bonetti, L., dos Santos Filho, L.R., Neto, J.A., et al.: Effective photon mass from Super and Lorentz symmetry breaking. Phys. Lett. B 764, 203 (2017). arXiv:1607.08786 [hep-ph]

  83. Pani, P., Cardoso, V., Gualtieri, L., et al.: Black-hole bombs and photon-mass bounds. Phys. Rev. Lett. 109, 131102 (2012). arXiv:1209.0465 [gr-qc]

  84. Starobinsky, A.A.: A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99 (1980)

    Article  ADS  Google Scholar 

  85. Guth, A.H.: Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347 (1981)

    Article  ADS  Google Scholar 

  86. Albrecht, A., Steinhardt, P.J.: Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 48, 1220 (1982)

    Article  ADS  Google Scholar 

  87. Linde, A.D.: A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108, 389 (1982)

    Article  ADS  Google Scholar 

  88. Linde, A.D.: Inflationary cosmology. Lect. Notes Phys. 738, 1 (2008). arXiv:0705.0164 [hep-th]

    Article  ADS  MATH  Google Scholar 

  89. Linde, A.D.: Inflationary cosmology after Planck 2013. (2014). arXiv:1402.0526 [hep-th]

  90. Martin, J., Ringeval, C., Vennin, V.: Encyclopædia inflationaris. Phys. Dark Univ. 5, 75 (2014). arXiv:1303.3787 [astro-ph.CO]

    Article  Google Scholar 

  91. Quevedo, F.: Lectures on string/brane cosmology. Class. Quantum Gravity 19, 5721 (2002). arXiv:hep-th/0210292

    Article  MathSciNet  MATH  Google Scholar 

  92. Riess, A.G., et al.: (Supernova Search Team Collaboration): Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998). arXiv:astro-ph/9805201

    Article  ADS  Google Scholar 

  93. Percival, W.J., et al. [SDSS Collaboration]: Baryon acoustic oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample. Mon. Not. R. Astron. Soc. 401, 2148 (2010). arXiv:0907.1660 [astro-ph.CO]

  94. Bennett, C.L., et al. [WMAP Collaboration]: Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: final maps and results. Astrophys. J. Suppl. Ser. 208, 20 (2013). arXiv:1212.5225 [astro-ph.CO]

  95. Ade P.A.R., et al. [Planck Collaboration]: Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. A 16, 571 (2014), arXiv:1303.5076 [astro-ph.CO]

  96. Zeldovich, Y.B.: The cosmological constant and the theory of elementary particles. Phys. Usp. 11, 381 (1968)

    Article  ADS  MathSciNet  Google Scholar 

  97. Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  98. Sahni, V., Starobinsky, A.A.: The case for a positive cosmological \(\Lambda \)-term. Int. J. Mod. Phys. D 9, 373 (2000). arXiv:astro-ph/9904398

    ADS  Google Scholar 

  99. Peebles, P.J.E., Ratra, B.: The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559 (2003). arXiv:astro-ph/0207347

    Article  ADS  MathSciNet  MATH  Google Scholar 

  100. Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753 (2006). arXiv:hep-th/0603057

    Article  ADS  MathSciNet  MATH  Google Scholar 

  101. Bamba, K., Capozziello, S., Nojiri, S., et al.: Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 342, 155 (2012). arXiv:1205.3421 [gr-qc]

  102. Sahni, V., Shafieloo, A., Starobinsky A. A.: Model independent evidence for dark energy evolution from Baryon Acoustic Oscillations. Astrophys. J. P793, L40 (2014). arXiv:1406.2209 [astro-ph.CO]

  103. Aubourg, E., et al. [BOSS Collaboration]: Cosmological implications of baryon acoustic oscillation (BAO) measurements. Phys. Rev. D 92, 123516 (2015). arXiv:1411.1074 [astro-ph.CO]

  104. Delubac T., et al. (BOSS Collaboration): Baryon acoustic oscillations in the Ly\(\alpha \) forest of BOSS DR11 quasars. Astron. Astrophys. 59, 574 (2015). arXiv:1404.1801 [astro-ph.CO]

  105. Bezrukov, F.L., Magnin, A., Shaposhnikov, M.: Standard Model Higgs boson mass from inflation. Phys. Lett. B 675, 88 (2009). arXiv:0812.4950 [hep-ph]

    Article  ADS  Google Scholar 

  106. Aad, G., et al. [ATLAS Collaboration]: Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1 (2012). arXiv:1207.7214 [hep-ex]

  107. Chatrchyan, S., et al. [CMS Collaboration]: Observation of a new boson at a mass of \(125\) GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30 (2012). arXiv:1207.7235 [hep-ex]

  108. Nojiri, S., Odintsov, S.D.: Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models. Phys. Rep. 505, 59 (2011). arXiv:1011.0544 [gr-qc]

  109. Capozziello, S., De Laurentis, M.: Extended theories of gravity. Phys. Rep. 509, 167 (2011). arXiv:1108.6266 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  110. Clifton, T., Ferreira, P.G., Padilla, A., et al.: Modified gravity and cosmology. Phys. Rep. 513, 1 (2012). arXiv:1106.2476 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  111. Brans, C., Dicke, R.H.: Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  112. Hamada, Y., Kawai, H., Oda, K., et al.: Higgs inflation still alive. Rev. Phys. Lett. 112, 241 (2014). arXiv:1403.5043 [hep-ph]

    Article  Google Scholar 

  113. Bezrukov, F., Shaposhnikov, M.: Higgs inflation at the critical point. Phys. Lett. B 734, 249 (2014). arXiv:1403.6078 [hep-ph]

    Article  ADS  Google Scholar 

  114. Ford, L.H.: Inflation driven by a vector field. Phys. Rev. D 40, 967 (1989)

    Article  ADS  Google Scholar 

  115. Koivisto, T., Mota, D.F.: Dark energy anisotropic stress and large scale structure. Phys. Rev. D 73, 083502 (2006). arXiv:astro-ph/0512135

    Article  ADS  MathSciNet  Google Scholar 

  116. Dimopoulos, K.: Density perturbations in the universe from massive vector fields. In: AIP Conference Proceedings, vol. 957, p. 387 (2007). arXiv:0709.1109 [hep-th]

  117. Bamba, K., Odintsov, S.D.: Inflation and late-time cosmic acceleration in non-minimal Maxwell-F(R) gravity and the generation of large-scale magnetic fields. J. Cosmol. Astropart. Phys. 0804, 024 (2008). arXiv:0801.0954 [astro-ph]

    Article  ADS  Google Scholar 

  118. Jiménez, J.B., Maroto, A.L.: A cosmic vector for dark energy. Phys. Rev. D 78, 063005 (2008). arXiv:0801.1486 [astro-ph]

    Article  ADS  Google Scholar 

  119. Golovnev, A., Mukhanov, V., Vanchurin, V.: Vector inflation. J. Cosmol. Astropart. Phys. 0806, 009 (2008). arXiv:0802.2068 [astro-ph]

    Article  ADS  Google Scholar 

  120. Koivisto, T., Mota, D.F.: Vector field models of inflation and dark energy. J. Cosmol. Astropart. Phys. 0808, 021 (2008). arXiv:0805.4229 [astro-ph]

    Article  ADS  MathSciNet  Google Scholar 

  121. Kanno, S., Kimura, M., Soda, J., et al.: Anisotropic inflation from vector impurity. J. Cosmol. Astropart. Phys. 0808, 034 (2008). arXiv:0806.2422 [hep-ph]

    Article  ADS  Google Scholar 

  122. Jiménez, J.B., Maroto, A.L.: Cosmological electromagnetic fields and dark energy. J. Cosmol. Astropart. Phys. 0903, 016 (2009). arXiv:0811.0566 [astro-ph]

    Article  Google Scholar 

  123. Watanabe, M.a., Kanno, S., Soda, J.: Inflationary universe with anisotropic hair. Phys. Rev. Lett. 102, 191302 (2009). arXiv:0902.2833 [hep-th]

  124. Jiménez, J.B., Koivisto T.S., Maroto A.L., et al.: Perturbations in electromagnetic dark energy. J. Cosmol. Astropart. Phys. 10, 029 (2009). arXiv:0907.3648 [physics.gen-ph]

  125. Kanno, S., Soda, J., Watanabe, M.A.: Anisotropic power-law inflation. J. Cosmol. Astropart. Phys. 1012, 024 (2010). arXiv:1010.5307 [hep-th]

    Article  ADS  Google Scholar 

  126. Golovnev, A.: Linear perturbations in vector inflation and stability issues. Phys. Rev. D 81, 023514 (2010). arXiv:0910.0173 [astro-ph.CO]

  127. Thorsrud, M., Mota D.F., Hervik, S.: Cosmology of a scalar field coupled to matter and an isotropy-violating Maxwell field. J. High Energy Phys. 1210, 066 (2012). arXiv:1205.6261 [hep-th]]

  128. Bartolo, N., Matarrese, S., Peloso, M., et al.: Anisotropy in solid inflation. J. Cosmol. Astropart. Phys. 1308, 022 (2013). arXiv:1306.4160 [astro-ph.CO]

  129. Bennett, C.L., et al.: (WMAP collaboration): Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: are there cosmic microwave background anomalies? Astrophys. J. Suppl. Ser. 192, 17 (2011). arXiv:1001.4758 [astro-ph.CO]

  130. Ade, P.A.R., et al.: [Planck Collaboration]: Planck 2013 results. XXIII. Isotropy and statistics of the CMB. Astron. Astrophys. A 23, 571 (2014). arXiv:1303.5083 [astro-ph.CO]

  131. Ade, P.A.R., et al.: (Planck Collaboration): Planck 2013 results. XXVI. Background geometry and topology of the Universe. Astron. Astrophys. A26, 571 (2014). arXiv:1303.5086 [astro-ph.CO]

  132. Mariano, A., Perivolaropoulos, L.: CMB maximum temperature asymmetry axis: alignment with other cosmic asymmetries. Phys. Rev. D 87, 043511 (2013). arXiv:1211.5915 [astro-ph.CO]

  133. Antoniou, I., Perivolaropoulos, L.: Searching for a cosmological preferred axis: Union2 data analysis and comparison with other probes. J. Cosmol. Astropart. Phys. 12, 012 (2010). arXiv:1007.4347 [astro-ph.CO]

  134. Cai, R.G., Tuo, Z.L.: Direction dependence of the deceleration parameter. J. Cosmol. Astropart. Phys. 1202, 004 (2012). arXiv:1109.0941 [astro-ph.CO]

  135. Zhao, W., Wu, P. X., Zhang, Y.: Anisotropy of cosmic acceleration. Int. J. Mod. Phys. D 22, 1350060 (2013). arXiv:1305.2701 [astro-ph.CO]

  136. Campanelli, L., Cea, P., Tedesco, L.: Cosmic microwave background quadrupole and ellipsoidal universe. Phys. Rev. D 76, 063007 (2007). arXiv:0706.3802 [astro-ph]

    Article  ADS  Google Scholar 

  137. Wald, R.M.: Asymptotic behavior of homogeneous cosmological models in the presence of a positive cosmological constant. Phys. Rev. D 28, 2118 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  138. Moss, I., Sahni, V.: Anisotropy in the chaotic inflationary universe. Phys. Lett. B 178, 159 (1986)

    Article  ADS  Google Scholar 

  139. Kitada, Y., Maeda, K.I.: Cosmic no hair theorem in power law inflation. Phys. Rev. D 45, 1416 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  140. Barrow, J.D.: Cosmological limits on slightly skew stresses. Phys. Rev. D 55, 7451 (1997)

    Article  ADS  Google Scholar 

  141. Koivisto, T., Mota, D.F.: Accelerating cosmologies with an anisotropic equation of state. Astrophys. J. 679, 1 (2008). arXiv:0707.0279 [astro-ph]

    Article  ADS  Google Scholar 

  142. Rodrigues, D.C.: Anisotropic cosmological constant and the CMB quadrupole anomaly. Phys. Rev. D 77, 023534 (2008). arXiv:0708.1168 [astro-ph]

    Article  ADS  Google Scholar 

  143. Battye, R., Moss, A.: Anisotropic dark energy and CMB anomalies. Phys. Rev. D 80, 023531 (2009). arXiv:0905.3403 [astro-ph.CO]

  144. Akarsu, Ö., Kılınç, C.B.: LRS Bianchi type I models with anisotropic dark energy and constant deceleration parameter. Gen. Rel. Grav. 42, 119 (2010). arXiv:0807.4867 [gr-qc]

  145. Akarsu, Ö., Kılınç, C.B.: De-Sitter expansion with anisotropic fluid in Bianchi type-I space-time. Astrophys. Space Sci. 326, 315 (2010). arXiv:1001.0550 [gr-qc]

  146. Campanelli, L., Cea, P., Fogli, G. L., et al.: Anisotropic dark energy and ellipsoidal universe. Int. J. Mod. Phys. D 20, 1153 (2011). arXiv:1103.2658 [astro-ph.CO]

  147. Akarsu, Ö., Dereli, T., Oflaz, N.: Accelerating anisotropic cosmologies in Brans-Dicke gravity coupled to a mass-varying vector field. Class. Quantum Grav. 31, 045020 (2014). arXiv:1311.2573 [gr-qc]

  148. Appleby, S., Battye, R., Moss, A.: Constraints on the anisotropy of dark energy. Phys. Rev. D 81, 081301 (2010). arXiv:0912.0397 [astro-ph.CO]

  149. Appleby, S.A., Linder, E.V.: Probing dark energy anisotropy. Phys. Rev. D 87, 023532 (2013). arXiv:1210.8221 [astro-ph.CO]

  150. Bento, M.C., Bertolami, O., Moniz, P.V., et al.: On the cosmology of massive vector fields with SO(\(3\)) global symmetry. Class. Quantum Grav. 10, 285 (1993). arXiv:gr-qc/9302034

  151. Armendariz-Picon, C.: Could dark energy be vector-like? J. Cosmol. Astropart. Phys. 0407, 007 (2004). arXiv:astro-ph/0405267

    Article  ADS  Google Scholar 

  152. Hosotani, Y.: Exact solution to the Einstein-Yang-Mills equation. Phys. Lett. B 147, 44 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  153. Galtsov, D.V., Volkov, M.S.: Yang Mills cosmology: cold matter for a hot universe. Phys. Lett. B 256, 17 (1991)

    Article  ADS  Google Scholar 

  154. Kiselev, V.V.: Vector field as a quintessence partner. Class. Quantum Grav. 21, 3323 (2004). arXiv:gr-qc/0402095

  155. Carroll, S.M., Lim, E.A.: Lorentz-violating vector fields slow the universe down. Phys. Rev. D 70, 123525 (2004). arXiv:hep-th/0407149

    Article  ADS  Google Scholar 

  156. Böhmer, C.G., Harko, T.: Dark energy as a massive vector field. Eur. Phys. J. C50, 423 (2007). arXiv:gr-qc/0701029

  157. Himmetoğlu, B., Contaldi, C.R., Peloso, M.: Instability of anisotropic cosmological solutions supported by vector fields. Phys. Rev. Lett. 102, 111301 (2009). arXiv:0809.2779 [astro-ph]

    Article  ADS  Google Scholar 

  158. Himmetoğlu, B., Contaldi, C.R., Peloso, M.: Ghost instabilities of cosmological models with vector fields non-minimally coupled to the curvature. Phys. Rev. D 80, 123530 (2009). arXiv:0909.3524 [astro-ph.CO]

  159. Esposito-Farese, G., Pitrou, C., Uzan, J.P.: Vector theories in cosmology. Phys. Rev. D 81, 063519 (2010). arXiv:0912.0481 [gr-qc]

  160. Martin, J., Yokoyama, J.: Generation of large-scale magnetic fields in single-field inflation. J. Cosmol. Astropart. Phys. 0801, 025 (2008). arXiv:0711.4307 [astro-ph]

    Article  ADS  Google Scholar 

  161. Hervik, S., Mota D.F., Thorsrud, M.: Inflation with stable anisotropic hair: Is it cosmologically viable? J. High Energy Phys. 1111, 146 (2011). arXiv:1109.3456 [gr-qc]

  162. Fleury, P., Almeida, J.P.B., Pitrou, C., et al.: On the stability and causality of scalar-vector theories. J. Cosmol. Astropart. Phys. 11, 043 (2014). arXiv:1406.6254 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  163. Heisenberg, L.: Generalization of the Proca action. J. Cosmol. Astropart. Phys. 1405, 015 (2014). arXiv:1402.7026 [hep-th]

    Article  ADS  Google Scholar 

  164. Jiménez, J.B., Heisenberg, L.: Derivative self-interactions for a massive vector field. Phys. Lett. B 757, 405 (2016). arXiv:1602.03410 [hep-th]

    Article  ADS  MATH  Google Scholar 

  165. De Felice, A., Heisenberg, L., Kase, R.: Effective gravitational couplings for cosmological perturbations in generalized Proca theories. Phys. Rev. D 94, 044024 (2016). arXiv:1605.05066 [gr-qc]

  166. De Felice, A., Heisenberg, L., Kase, R.: Cosmology in generalized Proca theories. J. Cosmol. Astropart. Phys. 1606, 048 (2016). arXiv:1603.05806 [gr-qc]

  167. Heisenberg, L., Kase, R., Tsujikawa, S.: Anisotropic cosmological solutions in massive vector theories. J. Cosmol. Astropart. Phys. 1611, 008 (2016), arXiv:1607.03175 [gr-qc]

  168. Ostrogradsky, M.: Memoires sur les equations differentielle relatives au probleme des isoperimetres. Mem. Ac. St. Petersbourg 6, 385 (1850)

    Google Scholar 

  169. Papantonopoulos, E.: Modifications of Einstein’s theory of gravity at large distances. Lecture Notes in Physics, vol. 892. Springer, Cham (2015)

  170. Uzan, J.P.: Varying constants, gravitation and cosmology. Living Rev. Relat. 14, 2 (2011). arXiv:1009.5514 [astro-ph.CO]

Download references

Acknowledgements

We thank Dieter Van den Bleeken for his useful comments. The authors further thank to the anonymous referee as well as Alessandro D.A.M. Spallicci for the helpful and constructive comments that greatly contributed to improving the final version of the paper. Ö.A. acknowledges the support by the Science Academy in scheme of the Distinguished Young Scientist Award (BAGEP). Ö.A. acknowledges further the financial support he received from, and hospitality of the Abdus Salam International Centre for Theoretical Physics (ICTP), where parts of this work were carried out. N. K. acknowledges the support she has been receiving from Boğaziçi University Scientific Research Fund with BAP project no: 7128 while this research was carrying out. N.K. acknowledges also the post-doctoral research support she is receiving from the İstanbul Technical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nihan Katırcı.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akarsu, Ö., Arık, M. & Katırcı, N. Inflation and Late Time Acceleration Designed by Stueckelberg Massive Photon. Found Phys 47, 769–796 (2017). https://doi.org/10.1007/s10701-016-0059-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-016-0059-y

Keywords

Navigation