Skip to main content
Log in

Electrodynamics and Spacetime Geometry: Foundations

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We explore the intimate connection between spacetime geometry and electrodynamics. This link is already implicit in the constitutive relations between the field strengths and excitations, which are an essential part of the axiomatic structure of electromagnetism, clearly formulated via integration theory and differential forms. We review the foundations of classical electromagnetism based on charge and magnetic flux conservation, the Lorentz force and the constitutive relations. These relations introduce the conformal part of the metric and allow the study of electrodynamics for specific spacetime geometries. At the foundational level, we discuss the possibility of generalizing the vacuum constitutive relations, by relaxing the fixed conditions of homogeneity and isotropy, and by assuming that the symmetry properties of the electro-vacuum follow the spacetime isometries. The implications of this extension are briefly discussed in the context of the intimate connection between electromagnetism and the geometry (and causal structure) of spacetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Goenner, H.F.M.: On the history of unified field theories. Living Rev. Relat. 7, 2 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Blagojevic, M., and Hehl, F.W.: Gauge Theories of Gravitation. Imperial College Press, London (2013). arXiv:1210.3775

  3. Gronwald, F., Hehl, F.W., and Nitsch, J.: Axiomatics of classical electrodynamics and its relation to gauge field theory. arXiv:physics/0506219

  4. Hehl, F.W., and Obukhov, Y.N.: A gentle introduction to the foundations of classical electrodynamics: The meaning of the excitations \((D,H)\) and the field strengths \((E, B)\). arXiv:physics/0005084

  5. Hehl, F.W., and Obukhov, Y.N.: Spacetime metric from local and linear electrodynamics: A New axiomatic scheme. Lect. Notes Phys. 702, 163 (2006). arXiv:gr-qc/0508024

  6. Hehl, F.W., and Obukhov, Y.N.: How does the electromagnetic field couple to gravity, in particular to metric, nonmetricity, torsion, and curvature? Lect. Notes Phys. 562 479 (2001). arXiv:gr-qc/0001010

  7. Hehl, F.W.: Maxwell’s equations in Minkowski’s world: Their premetric generalization and the electromagnetic energy-momentum tensor. Ann. Phys. 520, 691 (2008). arXiv:gr-qc/0807.4249

  8. Hehl, F.W., and Obukhov, Y.N.: Dimensions and units in electrodynamics. Gen. Rel. Grav. 37, 733 (2005). arXiv:physics/0407022

  9. Lammerzahl, C., and Hehl, F.W.: Riemannian light cone from vanishing birefringence in premetric vacuum electrodynamics. Phys. Rev. D 70, 105022 (2004). arXiv:gr-qc/0409072

  10. Itin, Y., and Hehl, F.W.: Is the Lorentz signature of the metric of space-time electromagnetic in origin? Ann. Phys. 312, 60 (2004). arXiv:gr-qc/0401016

  11. Hehl, F.W., and Obukhov, Y.N.: To consider the electromagnetic field as fundamental, and the metric only as a subsidiary field. Found. Phys. 35, 2007 (2005). arXiv:physics/0404101

  12. Hacyan, S.: Effects of gravitational waves on the polarization of pulsars. Int. J. Mod. Phys. A 31(no. 02n03), 1641023 (2016). arXiv:gr-qc/1502.04630

  13. Abbott, B.P., et al.: LIGO Scientific and Virgo Collaborations, observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 116, 061102 (2016). arXiv:gr-qc/1602.03837

  14. Riles, K.: Gravitational waves: sources, detectors and searches. Prog. Part. Nucl. Phys. 68, 1 (2013). arXiv:hep-ex/1209.0667

  15. Singer, L.P. et al.: The first two years of electromagnetic follow-up with advanced LIGO and Virgo. Astrophys. J. 795 (2), 105 (2014). arXiv:astro-ph.HE/1404.5623

  16. Hobson, M.P., Efstathiou, G.P., Lasenby, A.N.: General relativity: An introduction for physicists. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  17. Hartle, J.B.: Gravity. An Introduction to Einsteins General Relativity. Pearson Addison Wesley, Boston (2003)

    Google Scholar 

  18. Hehl, F.W., Obukhov, Y.N.: Foundations of Classical Electrodynamics: Charge, Flux, and Metric. Birkhuser, Boston (2003)

    Book  MATH  Google Scholar 

  19. Heisenberg, W., Euler, H.: Consequences of Dirac’s theory of positrons. Z. Phys. 98, 714–732 (1936)

    Article  ADS  MATH  Google Scholar 

  20. Mashhoon, B.: Nonlocal electrodynamics. In: Novello, M. (ed.) Cosmology and Gravitation, Proc. VII Brasilian School of Cosmology and Gravitation, Rio de Janeiro, pp. 245–295. Editions Frontieres, Gif-sur-Yvette (1994)

    Google Scholar 

  21. Baekler, P., Favaro, A., Itin, Y., Hehl, F.W.: The Kummer tensor density in electrodynamics and in gravity. Annals Phys. 349, 297 (2014). arXiv:gr-qc/1403.3467

  22. Hehl, F.W., Obukhov, Y.N.: Linear media in classical electrodynamics and the Post constraint. Phys. Lett. A 334, 249 (2005). arXiv:physics/0411038

  23. Lerche, I.: The Fizeau effect: theory, experiment, and Zeemans measurement. Am. J. Phys. 45(12), 1154 (1977)

    Article  ADS  Google Scholar 

  24. Lindell, I.V., and Sihvola, A.H.: Perfect electromagnetic conductor. arXiv:physics/0503232v1

  25. Tellegen, B.D.H.: The gyrator, a new electric network element. Philips. Res. Rep. 3, 81 (1948)

    MathSciNet  Google Scholar 

  26. Cabral, F., and Lobo, F.S.N.: Electrodynamics and spacetime geometry: astrophysical applications. arXiv:gr-qc/1603.08180

  27. Chicone, C., Mashhoon, B.: Gravitomagnetic jets. Phys. Rev. D 83, 064013 (2011). arXiv:gr-qc/1005.1420

  28. Merloni, A., Vietri, M., Stella, L., Bini, D.: On gravitomagnetic precession around black holes. Mon. Not. Roy. Astron. Soc. 304, 155 (1999). arXiv:astro-ph/9811198

  29. Chicone, C., Mashhoon, B.: Gravitomagnetic accelerators. Phys. Lett. A 375, 957 (2011). arXiv:gr-qc/1005.2768

  30. Thorne, K.: Gravitomagnetism, jets in quasars, and the Stanford Gyroscope Experiment. Near Zero New Front. Phys. 1, 573–586 (1988)

    ADS  Google Scholar 

  31. Penna, R.F.: Black hole Meissner effect and Blandford-Znajek jets. Phys. Rev. D 89(10), 104057 (2014). arXiv:astro-ph.HE/1403.0938

  32. Cabral, F., and Lobo, F.S.N.: Gravitational waves and electrodynamics: new perspectives. arXiv:gr-qc/1603.08157

Download references

Acknowledgments

F. C. acknowledges financial support of the Fundação para a Ciência e Tecnologia through the PhD grant with reference PD/BD/128017/2016, funded by FCT (Portugal). F. S. N. L. acknowledges financial support of the Fundação para a Ciência e Tecnologia through an Investigador FCT Research contract, with reference IF/00859/2012, funded by FCT/MCTES (Portugal).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco S. N. Lobo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabral, F., Lobo, F.S.N. Electrodynamics and Spacetime Geometry: Foundations. Found Phys 47, 208–228 (2017). https://doi.org/10.1007/s10701-016-0051-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-016-0051-6

Keywords

Navigation