Foundations of Physics

, Volume 47, Issue 1, pp 113–116 | Cite as

About a “Nonlocal” Local Model Considered by L. Vervoort, and the Necessity to Distinguish Locality from Einstein Locality



L. Vervoort claims to have found a model which “can violate the Bell inequality and reproduce the quantum statistics, even if it is based on local dynamics only”. This claim is false. The proposed model contains global elements. The physics behind the model is local, but would not allow the explanation of violations of Bell inequalities for space-like separated events, if superluminal causal influences are forbidden. To use it for this purpose, one has to introduce a preferred frame where information can be send faster than light. As a cause of the misunderstanding we identify the unfortunate convention to use “local” as a synonym for Einstein-local, so that theories which are local in every physically relevant sense have to be named “non-local”, and argue that this convention should be abandoned.


Locality Einstein locality Bell inequalities 


  1. 1.
    Vervoort, L.: No-Go theorems face background-based theories for quantum mechanics. Found. Phys. 46, 458–472 (2016). arXiv:1406.0901 ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200 (1964)Google Scholar
  3. 3.
    A. Einstein. In: Schilp, P.A. (ed.) Albert Einstein, Philosopher Scientist, p. 85. Library of Living Philosophers, Evanston (1949)Google Scholar
  4. 4.
    Gröblacher, S., Paterek, T., Kaltenbaek, R., Brukner, Č., Żukowski, M., Aspelmeyer, M., Zeilinger, A.: An experimental test of non-local realism. Nature 446, 871–875 (2007). arXiv:0704.2529 ADSCrossRefGoogle Scholar
  5. 5.
    Wittmann, B., Ramelow, S., Steinlechner, F., Langford, N.K., Brunner, N., Wiseman, H.M., Ursin, R., Zeilinger, A.: Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering. New J. Phys. 14, 053030 (2012). arXiv:1111.0760 ADSCrossRefGoogle Scholar
  6. 6.
    Salart, D., Baas, A., Branciard, C., Gisin, N., Zbinden, H.: Testing spooky action at a distance. Nature 454, 861–864 (2008). arXiv:0808.3316 ADSCrossRefGoogle Scholar
  7. 7.
    Jacobson, T., Mattingly, D.: Gravity with a dynamical preferred frame. Phys. Rev. D 64, 024028 (2001). arXiv:gr-qc/0007031 ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Schmelzer, I.: A generalization of the Lorentz ether to gravity with general-relativistic limit. Adv. Appl. Clifford Algebras 22(1), 203–242 (2012). arXiv:gr-qc/0205035 MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Schmelzer, I.: A condensed matter interpretation of SM fermions and gauge fields. Found. Phys. 39(1), 73–107 (2009). arXiv:0908.0591 ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.BerlinGermany

Personalised recommendations