Skip to main content
Log in

A New Fate of a Warped 5D FLRW Model with a U(1) Scalar Gauge Field

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

If we live on the weak brane with zero effective cosmological constant in a warped 5D bulk spacetime, gravitational waves and brane fluctuations can be generated by a part of the 5D Weyl tensor and carries information of the gravitational field outside the brane. We consider on a cylindrical symmetric warped FLRW background a U(1) self-gravitating scalar field coupled to a gauge field without bulk matter. It turns out that brane fluctuations can be formed dynamically, due to the modified energy–momentum tensor components of the scalar-gauge field (“cosmic string”). As a result, we find that the late-time behavior could significantly deviate from the standard evolution of the universe. The effect is triggered by the time-dependent warpfactor with two branches of the form \(\frac{\pm 1}{\sqrt{\tau r}}\sqrt{(c_1e^{\sqrt{2\tau } t}+c_2e^{-\sqrt{2\tau } t})(c_3e^{\sqrt{2\tau } r}+c_4e^{-\sqrt{2\tau } r})}\) ( with \(\tau , c_i\) constants) and the modified brane equations comparable with a dark energy effect. This is a brane-world mechanism, not present in standard 4D FLRW, where the large disturbances are rapidly damped as the expansion proceed. Because gravity can propagate in the bulk, the cosmic string can build up a huge angle deficit (or mass per unit length) by the warpfactor and can induce massive KK-modes felt on the brane. Disturbances in the spatial components of the stress-energy tensor cause cylindrical symmetric waves, amplified due to the presence of the bulk space and warpfactor. They could survive the natural damping due to the expansion of the universe. It turns out that one of the metric components becomes singular at the moment the warp factor develops an extremum. This behavior could have influence on the possibility of a transition from acceleration to deceleration or vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Spergel, D.N., et al.: First-year WMAP observations: determination of cosmological parameters. Astrophys. J. Suppl. 148, 175 (2003)

    Article  ADS  Google Scholar 

  2. Peiris, H.V., et al.: First-year WMAP observations: implications for inflation. Astrophys. J. Suppl. 148, 213 (2003)

    Article  ADS  Google Scholar 

  3. Spergel, D.N., et al.: Three-year WMAP observations: implications for cosmology. Astrophys. J. Suppl. 170, 377 (2007)

    Article  ADS  Google Scholar 

  4. Perlmutter, S., et al.: Measurements of \(\Omega \) and \(\Lambda \) from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  5. Riess, A.G., et al.: New hubble space telescope discoveries of type Ia supernovae at \(z\ge 1\): narrowing constraints on the early behavior of dark energy. Astrophys. J. 659, 98 (2007)

    Article  ADS  Google Scholar 

  6. Maartens, R.: Dark energy and dark gravity J. Phys. Conf. Ser. 68, 012046 (2007). Dark energy from brane-world gravity. Lecture Notes in Physics, vol. 720, p. 323 (2007). arXiv:astro-ph/0602415v1

  7. Felsager, B.: Geometry. Particles and Fields. Odense University Press, Odnese (1981)

    MATH  Google Scholar 

  8. Nielsen, H.B., Olesen, P.: Vortex-line models for dual strings. Nucl. Phys. B 61, 45 (1973)

    Article  ADS  Google Scholar 

  9. Garfinkle, D.: General relativistic strings. Phys. Rev. D 32, 1323 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  10. Slagter, R.J., Masselink, D.: Warped self-gravitating U(1) gauge cosmic strings in 5D. Int. J. Mod. Phys. D 21, 1250060 (2012)

    Article  ADS  MATH  Google Scholar 

  11. Slagter, R.J.: Time evolution of a warped cosmic string. Int. J. Mod. Phys. D 10, 1237 (2014)

    MATH  Google Scholar 

  12. Slagter, R.J.: Dark energy generated by warped cosmic strings (2014). arXiv:gr-qc/14077505

  13. Laguna-Castillo, P., Matzner, E.A.: Coupled field solutions for U(1) gauge cosmic strings. Phys. Rev. D 36, 3663 (1987)

    Article  ADS  Google Scholar 

  14. Laguna-Castillo, P., Garfinkle, D.: Spacetime of supermassive U(1) gauge cosmic strings. Phys. Rev. D 40, 1011 (1989)

    Article  ADS  Google Scholar 

  15. Gregory, R.: Cosmological cosmic strings. Phys. Rev. 39, 2108 (1989)

    ADS  MathSciNet  Google Scholar 

  16. Kaluza, T.: Zum unit\(\ddot{a}\)ts problem in der physik. Sitzungsber. K. Preuss. Akad. Wiss. Berlin, 966 (1921)

  17. Klein, O.: Quantentheorie und f\(\ddot{u}\)nfdimensionale relativit\(\ddot{a}\)tstheorie. Zeitsch. Phys. 37, 895 (1926)

    Article  ADS  Google Scholar 

  18. Arkani-Hamed, N., Dimopoulos, S., Dvali, G.: The hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 429, 263 (1998)

    Article  ADS  Google Scholar 

  19. Arkani-Hamed, N., Dimopoulos, S., Dvali, G.: Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity. Phys. Rev. D 59, 086004 (1999)

    Article  ADS  Google Scholar 

  20. Antoniadis, I., Arkani-Hamed, N., Dimopoulos, S., Dvali, G.: New dimensions at a millimeter to a Fermi and superstrings at a TeV. Phys. Lett. B 436, 257 (1998)

    Article  ADS  Google Scholar 

  21. Randall, L., Sundrum, R.: Large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370 (1999) arXiv:hep-ph/9905221; An alternative to compactification. Phys. Rev. Lett. 83, 4690 (1999). arXiv:hep-th/9906064

  22. Maartens, R.: Brane-world cosmological perturbations: a covariant approach. Prog. Theor. Phys. Suppl. 148, 213 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Maartens, R., Koyama, K.: Brane-world gravity. Liv. Rev. Relt 13, 5 (2010)

    MATH  Google Scholar 

  24. Shiromizu, T., Maeda, K., Sasaki, M.: The Einstein equations on the 3-brane world. Phys. Rev. D 62, 024012 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  25. Slagter, R.J.: Cosmic strings in brane world models. Proceedings of the Conference Multiverse and Fundamental Cosmology, pp. 39–42. American Institute of Physics, New York (2012)

    Google Scholar 

  26. Hutsemekers, D., Braibant, L., Pelgrims, V., Sluse, D.: Alignment of quasar polarizations with large-scale structures. Astron. Astrophys. A 572, 18 (2014)

    Article  ADS  Google Scholar 

  27. Beck, G.: Zur theorie binarer gravitationsfelder. Z. Phys. 33, 713 (1925)

    Article  ADS  MATH  Google Scholar 

  28. Einstein, A., Rosen, N.J.K.: On gravitational waves. J. Franklin Inst. 223, 43 (1937)

    Article  ADS  MATH  Google Scholar 

  29. Weber, J., Wheeler, J.A.: Reality of the cylindrical gravitational waves of Einstein and Rosen. Rev. Mod. Phys. 29, 509 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Gowdy, R.A., Edmonds, B.D.: Cylindrical gravitational waves in expanding universes: models for waves from compact sources. Phys. Rev. D 75, 084011 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  31. Gowdy, R. A.: Cylindrical gravitational waves in expanding universes: explicit pulse solutions. arXiv:gr-qc/07100987v1 (2007)

  32. Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E.: In: Landshoff, P.V., et al. (eds.) Exact Solutions of Einstein’s Field Equations. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  33. Stachel, J.J.: Cylindrical gravitational waves. J. Math. Phys. 7, 1321 (1968)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Ashtekar, A., Bicak, J., Schmidt, B.G.: Behavior of Einstein–Rosen waves at null infinity. Phys. Rev. D 55, 687 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  35. Anderson, M.R.: In: Foster, B. (ed.) The Mathematical Theory of Cosmic Strings. Institute of Physics Publishing, Bristol (2003)

    Chapter  Google Scholar 

  36. Sasaki, M., Shiromizu, T., Maeda, K.: Gravity, stability and energy conservation on the Randall–Sundrum brane world. Phys. Rev. D 62, 024008 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  37. Cartier, C., Durrer, R., Ruser, M.: On graviton production in braneworld cosmology. Phys. Rev. D 72, 104018 (2005)

    Article  ADS  Google Scholar 

  38. Thorne, K.S.: Energy of infinitely long, cylindrically symmetric systems in general relativity. Phys. Rev 138, B251 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Thorne, K.S.: The absolute stability of Melvin’s magnetic universe. Phys. Rev 139, B244 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  40. Goncalves, M.C.V.: Unpolarized radiative cylindrical space-times: trapped surfaces and quasilocal energy. Class. Quant. Grav. 20, 37–49 (2003)

    Article  ADS  MATH  Google Scholar 

  41. Slagter, R.J.: Non-linear gravitational waves as dark energy in warped spacetimes. To appear in the Proceedings of the 14th Marcel Grossmann Meeting (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinoud Jan Slagter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slagter, R.J., Pan, S. A New Fate of a Warped 5D FLRW Model with a U(1) Scalar Gauge Field. Found Phys 46, 1075–1089 (2016). https://doi.org/10.1007/s10701-016-0002-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-016-0002-2

Keywords

Navigation