Skip to main content
Log in

The Holographic Quantum

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We present a map of standard quantum mechanics onto a dual theory, that of the classical thermodynamics of irreversible processes. While no gravity is present in our construction, our map exhibits features that are reminiscent of the holographic principle of quantum gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. We will henceforth omit all normalistion factors, bearing in mind that all probabilites are to be normalised at the end.

  2. What quantum theorists call the Feynman path integral was independently developed in Ref. [23] by Onsager and collaborators, who appear to have arrived at the notion of a path integral all by themselves, without previous knowledge of Feynman’s earlier work [14].

  3. Implicit in the replacements (23) is the assumption that the thermodynamical extensive variable x, and the mechanical variable x, both have units of length. A dimensionful conversion factor is to be understood in case the dimensions do not match.

  4. In case more than just one normal coordinate is needed, this statement is to be understood as meaning the sum of all the lengths so obtained.

  5. We should remark that the assumption of compactness of the leaves \(\mathbb {L}_n\) can be lifted without altering our conclusions. A noncompact leaf encloses an infinite (yet countable) number of volume quanta \(Q_{D-1}\). Upon multiplication by an infinite (yet countable) number of momentum-space quanta \(P_{D-1}\), the dimension of the tangent Hilbert space \(\mathcal{H}_t\) remains denumerably infinite. This form of holography in which the leaves are noncompact replaces the notion of inside vs. outside the leaf with the equivalent notion of one side of the leaf vs. the other side. One should not dismiss this possibility as unphysical: the constant potential, for example, can be regarded as having either compact or noncompact equipotential submanifolds.

  6. Unless, of course, one is willing to allow for pair creation out of the vacuum, thus quitting quantum mechanics and entering field theory.

References

  1. Acosta, D., Fernández de Córdoba, P., Isidro, J.M., Santander, J.: An entropic picture of emergent quantum mechanics. Int. J. Geom. Methods Mod. Phys. 9, 1250048 (2012). arXiv:1107.1898 [hep-th]

  2. Acosta, D., Fernández de Córdoba, P., Isidro, J.M., Santander, J.L.G.: Emergent quantum mechanics as a classical, irreversible thermodynamics. Int. J. Geom. Methods Mod. Phys. 10, 1350007 (2013). arXiv:1206.4941 [math-ph]

  3. Bousso, R.: The holographic principle. Rev. Mod. Phys. 74, 825 (2002). arXiv:hep-th/0203101

  4. Blasone, M., Jizba, P., Vitiello, G.: Quantization and dissipation. Phys. Lett. A 287, 205 (2001). arXiv:hep-th/0007138

  5. L. de Broglie: La thermodynamique cachée des particules. Ann. Inst. Poincaré (A) Phys. Théorique 1, 1 (1964)

  6. Callen, H.: Thermodynamics. Wiley, New York (1960)

    MATH  Google Scholar 

  7. Carroll, R.: On the Emergence Theme of Physics. World Scientific, Singapore (2010)

    Book  MATH  Google Scholar 

  8. G. Cohen-Tannoudji: An Interpretive Conjecture for Physics Beyond the Standard Models: Generalized Complementarity. arXiv:1402.0823 [gr-qc]

  9. Doob, J.: Stochastic Processes. Wiley, New York (1953)

    MATH  Google Scholar 

  10. Elze, H.-T.: Symmetry aspects in emergent quantum mechanics. J. Phys. Conf. Ser. 171, 012034 (2009)

    Article  ADS  Google Scholar 

  11. Fernández de Córdoba, P., Isidro, J.M., Perea, M.H.: Emergent quantum mechanics as a thermal ensemble. Int. J. Geom. Methods Mod. Phys. 11, 1450068 (2014). arXiv:1304.6295 [math-ph]

  12. Fernández de Córdoba, P., Isidro, J.M., Perea, M.H., Vazquez Molina, J.: The irreversible quantum. Int. J. Geom. Methods Mod. Phys. 12, 1550013 (2015). arXiv:1311.2787 [quant-ph]

  13. Fernández de Córdoba, P., Isidro, J.M., Vazquez Molina, J.: Schroedinger vs. Navier–Stokes. arXiv:1409.7036 [math-ph]

  14. Feynman, R.: Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367 (1948)

    Article  ADS  MathSciNet  Google Scholar 

  15. Hartnoll, S.: Lectures on holographic methods for condensed matter physics. Class. Quantum Gravity 26, 224002 (2009). arXiv:0903.3246 [hep-th]

  16. G. ’t Hooft: Quantum gravity as a dissipative deterministic system. Class. Quantum Gravity 16, 3263 (1999). arXiv:gr-qc/9903084

  17. G. ’t Hooft: Emergent quantum mechanics and emergent symmetries. AIP Conf. Proc. 957, 154 (2007). arXiv:0707.4568 [hep-th]

  18. Kim, Y., Shin, I., Tsukioka, T.: Holographic QCD: past, present, and future. Prog. Part. Nucl. Phys. 68, 55 (2013). arXiv:1205.4852 [hep-ph]

  19. Kolekar, S., Padmanabhan, T.: Indistinguishability of thermal and quantum fluctuations. Class. Quantum Gravity 32, 202001 (2015). arXiv:1308.6289 [gr-qc]

  20. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  21. Maldacena, J.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998). arXiv:hep-th/9711200

  22. Matone, M.: Thermodynamique cachée des particules and the quantum potential. Ann. Fond. Broglie 37, 177 (2012). arXiv:1111.0270 [hep-ph]

  23. Onsager, L., Machlup, S.: Fluctuations and irreversible processes. Phys. Rev. 91, 1505 (1953)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Padmanabhan, T.: Thermodynamical aspects of gravity: new insights. Rep. Prog. Phys. 73, 046901 (2010). arXiv:0911.5004 [gr-qc]

  25. Padmanabhan, T.: General relativity from a thermodynamic perspective. Gen. Relativ. Gravit. 46, 1673 (2014). arXiv:1312.3253 [gr-qc]

  26. Penrose, R.: The Road to Reality. Jonathan Cape, London (2004)

    Google Scholar 

  27. Prigogine, I.: Introduction to Thermodynamics of Irreversible Processes. Interscience, New York (1961)

    MATH  Google Scholar 

  28. Smolin, L.: On the nature of quantum fluctuations and their relation to gravitation and the principle of inertia. Class. Quantum Gravity 3, 347 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  29. Smolin, L.: Quantum gravity and the statistical interpretation of quantum mechanics. Int. J. Theor. Phys. 25, 215 (1986)

    Article  MathSciNet  Google Scholar 

  30. Stephens, C., ’ t Hooft, G., Whiting, B.: Black hole evaporation without information loss. Class. Quantum Gravity 11, 621 (1994). arXiv:gr-qc/9310006

  31. Susskind, L.: The world as a hologram. J. Math. Phys. 36, 6377 (1995). arXiv:hep-th/9409089

  32. Verlinde, E.: On the origin of gravity and the laws of Newton. JHEP 1104, 029 (2011). arXiv:1001.0785 [hep-th]

  33. Witten, E.: Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253 (1998). arXiv:hep-th/9802150

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Isidro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández de Córdoba, P., Isidro, J.M. & Vazquez Molina, J. The Holographic Quantum. Found Phys 46, 787–803 (2016). https://doi.org/10.1007/s10701-015-9986-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-015-9986-2

Keywords

Navigation