Skip to main content
Log in

Fractional Relativistic Yamaleev Oscillator Model and Its Dynamical Behaviors

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In the paper we construct a new kind of fractional dynamical model, i.e. the fractional relativistic Yamaleev oscillator model, and explore its dynamical behaviors. We will find that the fractional relativistic Yamaleev oscillator model possesses Lie algebraic structure and satisfies generalized Poisson conservation law. We will also give the Poisson conserved quantities of the model. Further, the relation between conserved quantities and integral invariants of the model is studied and it is proved that, by using the Poisson conserved quantities, we can construct integral invariants of the model. Finally, the stability of the manifold of equilibrium states of the fractional relativistic Yamaleev oscillator model is studied. The paper provides a general method, i.e. fractional generalized Hamiltonian method, for constructing a family of fractional dynamical models of an actual dynamical system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yamaleev, R.M.: Generalized Newtonian equations of motion. Ann. Phys. 277, 1–18 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Yamaleev, R.M.: Relativistic equations of motion within Nambu’s formalism of dynamics. Ann. Phys. 285, 141–160 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Yamaleev, R.M.: Generalized Lorentz-Force equations. Ann. Phys. 292, 157–178 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Molgado, A., Rodriguez, A.: Mapping between the dynamic and mechanical properties of the relativistic oscillator and Euler free rigid body. J. Nonlinear Math. Phy. 14, 534–547 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Mongkolsakulvong, S., Chaikhan, P., Frank, T.D.: Oscillatory nonequilibrium Nambu systems: the canonical-dissipative Yamaleev oscillator. Eur. Phys. J. B 85, 90–99 (2012)

    Article  ADS  Google Scholar 

  6. Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman, New York (1982)

    MATH  Google Scholar 

  7. Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phy. Rev. E. 53, 1890–1899 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  8. Riewe, F.: Mechanics with fractional derivatives. Phy. Rev. E. 55, 3581–3592 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  9. Podlubny, I.: Fractional Differential Equations. Academic press, San Diego (1999)

    MATH  Google Scholar 

  10. Agrawal, O.P., Muslih, S.I., Baleanu, D.: Generalized variational calculus in terms of multi-parameters fractional derivatives. Commun. Nonlinear Sci. Numer. Simulat. 16, 4756–4767 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Agrawal, O.P.: Generalized variational problems and Euler-Lagrange equations. Comput. Math. Appl. 59, 1852–1864 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Baleanu, D., Avkar, T.: Lagrangians with linear velocities within Riemann-Liouville fractional derivatives. Nuovo Cimento Soc. Ital. Fis. B 119, 73–79 (2004)

    ADS  Google Scholar 

  13. Muslih, S.I., Baleanu, D.: Hamiltonian formulation of systems with linear velocities within Riemann-Liouville fractional derivatives. J. Math. Anal. Appl. 304, 599–606 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tarasov, V.E., Zaslavsky, G.M.: Nonholonomic constraints with fractional derivatives. J. Phys. A 39, 9797–9815 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Tarasov, V.E.: Fractional Dynamics. Higher Education Press, Beijing (2010)

    Book  MATH  Google Scholar 

  16. Luo, S.K., Li, L.: Fractional generalized Hamiltonian mechanics and Poisson conservation law in terms of combined Riesz derivatives. Nonlinear Dyn. 73, 639–647 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Luo, S.K., Li, L.: Fractional generalized Hamiltonian equations and its integral invariants. Nonlinear Dyn. 73, 339–346 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, L., Luo, S.K.: Fractional generalized Hamiltonian mechanics. Acta Mech. 224, 1757–1771 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Xu, Y.L., Luo, S.K.: Fractional Nambu dynamics. Acta Mech. 226, 3781–3793 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Luo, S.K., Xu, Y.L.: Fractional Birkhoffian mechanics. Acta Mech. 226, 829–844 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xu, Y.L., Luo, S.K.: Stability for manifolds of equilibrium state of fractional generalized Hamiltonian systems. Nonlinear Dyn. 76, 657–672 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  23. Atanackovic, T.M., Stankovic, B.: Stability of an elastic rod on a fractional derivative type of foundation. J. Sound Vib. 277, 149–161 (2004)

    Article  ADS  Google Scholar 

  24. He, J.M., Xu, Y.L., Luo, S.K.: Stability for manifolds of equilibrium state of fractional Birkhoffian systems. Acta Mech. 226, 2135–2146 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Laskin, N.: Fractional Schrodinger equation. Phys. Rev. E. 66, 056108 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  26. Radwan, A.G., Soliman, A.M., Elwakli, A.S.: On the stability of linear systems with fractional-order elements. Chaos Solitons Fract. 40, 2317–2328 (2009)

    Article  ADS  MATH  Google Scholar 

  27. Frederico, S.F., Torres, D.F.M.: Fractional optimal control in the sense of Caputo and the fractional Noether’s theorem. Int. Math. Forum. 3, 479–493 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Chen, X.W., Zhao, G.L., Mei, F.X.: A fractional gradient representation of the Poincaré equations. Nonlinear Dyn. 73, 579–582 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Leung, A.Y.T., Yang, H.X., Guo, Z.J.: The residue harmonic balance for fractional order vanderPol like oscillators. J. Sound Vib. 331, 1115–1126 (2012)

    Article  ADS  Google Scholar 

  30. Chen, L.C., Zhu, W.Q.: Stochastic averaging of strongly nonlinear oscillators with small fractional derivative damping under combined harmonic and white noise excitations. Nonlinear Dyn. 56, 2312241 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Pauli, W.: On the Hamiltonian structure of non-local field theories. IL Nuovo Cimento 10, 648–667 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  32. Martin, J.L.: Generalized classical dynamics and the ‘classical analogue’ of Fermi oscillator. Proc. R. Soc. Lon. A 251, 536–542 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Li, J.B., Zhao, X.H., Liu, Z.R.: Theory and Application of the Generalized Hamilton Systems. Science Press, Beijing (1994)

    Google Scholar 

  34. McEwan, J.: A complex formulation of Generalized Hamiltonian (Birkhoffian) theory. Found. Phys. 23, 313–327 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  35. Chen, X.W., Li, Y.M., Mei, F.X.: Influence of double parameters on the equilibrium stability of generalized Hamilton systems. Appl. Math. Mech. 35, 1392–1397 (2014)

    Google Scholar 

  36. Jia, L.Q., Zheng, S.W.: Mei symmetry of generalized Hamilton systems with additional terms. Acta Phy. Sin. 55, 3829–3832 (2006)

    MathSciNet  MATH  Google Scholar 

  37. Jiang, W.A., Luo, S.K.: A new type of non-Noether exact invariants and adiabatic invariants of generalized Hamiltonian systems. Nonlinear Dyn. 67, 475–482 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Luo, S.K., Li, Z.J., Peng, W., Li, L.: A Lie symmetrical basic integral variable relation and a new conservation law for generalized Hamiltonian systems. Acta Mech. 224, 71–84 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Jiang, W.A., Luo, S.K.: Stability for manifolds of equilibrium state of generalized Hamiltonian system. Meccanica 47, 379–383 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Luo, S.K., Zhang, Y.F.: Advances in the Study of Dynamics of Constrained System. Science Press, Beijing (2008)

    Google Scholar 

  41. Luo, S.K., Fu, J.L., Chen, X.W.: The algebraic structure of the dynamical equations for the variable mass nonholonomic systems. J. Electric Power. 13, 168–174 (1998)

    Google Scholar 

  42. Luo, S.K., Chen, X.W., Guo, Y.X.: Algebraic structure and Poisson integrals of rotational relativistic Birkhoff system. Chin. Phys. 10, 523–528 (2002)

    ADS  Google Scholar 

  43. Poincaré, H.: Les Méthodes Nouvelles de la Méchanique Celeste. Gauthier-Villars, Paris (1897)

    Google Scholar 

  44. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Spring, New York (1979)

    Google Scholar 

  45. Whittaker, E.T.: Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Cambridge University Press, Cambridge (1904)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Editor in Chief Gerard’t Hooft and all Reviewers for their valuable comments and suggestions, which have undoubtedly improved our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Kai Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, SK., He, JM., Xu, YL. et al. Fractional Relativistic Yamaleev Oscillator Model and Its Dynamical Behaviors. Found Phys 46, 776–786 (2016). https://doi.org/10.1007/s10701-015-9984-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-015-9984-4

Keywords

Navigation