Foundations of Physics

, Volume 45, Issue 10, pp 1269–1300 | Cite as

Reality Without Realism: On the Ontological and Epistemological Architecture of Quantum Mechanics

  • Arkady PlotnitskyEmail author
  • Andrei Khrennikov


First, this article considers the nature of quantum reality (the reality responsible for quantum phenomena) and the concept of realism (our ability to represent this reality) in quantum theory, in conjunction with the roles of locality, causality, and probability and statistics there. Second, it offers two interpretations of quantum mechanics, developed by the authors of this article, the second of which is also a different (from quantum mechanics) theory of quantum phenomena. Both of these interpretations are statistical. The first interpretation, by A. Plotnitsky, “the statistical Copenhagen interpretation,” is nonrealist, insofar as the description or even conception of the nature of quantum objects and processes is precluded. The second, by A. Khrennikov, is ultimately realist, because it assumes that the quantum-mechanical level of reality is underlain by a deeper level of reality, described, in a realist fashion, by a model, based in the pre-quantum classical statistical field theory, the predictions of which reproduce those of quantum mechanics. Moreover, because the continuous fields considered in this model are transformed into discrete clicks of detectors, experimental outcomes in this model depend on the context of measurement in accordance with N. Bohr’s interpretation and the statistical Copenhagen interpretation, which coincides with N. Bohr’s interpretation in this regard.


Causality Quantum mechanics Probability Reality Realism Statistics 



The authors are grateful to Irina Basieva, Ceslav Brukner, G. Mauro D’Ariano, Henry Folse, Gregg Jaeger, Jan-Åke Larsson, and Anton Zeilinger, for exceptionally productive discussions, and to both anonymous readers of the article for their insightful comments and helpful suggestions.


  1. 1.
    Heisenberg, W.: The Physical Principles of the Quantum Theory. Dover, New York (1930). Translated by Eckhart, K., and Hoyt, F. C. rpt (1949)Google Scholar
  2. 2.
    Bohr, N.: The Philosophical Writings of Niels Bohr, vol. 3. Ox Bow Press, Woodbridge (1987)Google Scholar
  3. 3.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete?. In: Wheeler, J.A., Wojciech H.Z. (eds.) Quantum Theory and Measurement, pp. 138–141. Princeton University Press, Princeton NJ, 1983 (1935)Google Scholar
  4. 4.
    Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48, 696–702 (1935)zbMATHCrossRefADSGoogle Scholar
  5. 5.
    Plotnitsky, A.: Epistemology and Probability: Bohr, Heisenberg. Schrödinger and the Nature of Quantum-Theoretical Thinking. Springer, Berlin (2009)Google Scholar
  6. 6.
  7. 7.
    Allahverdyan, A.E., Balian, R., Nieuwenhuizen, T.M.: Understanding quantum measurement from the solution of dynamical models. Phys. Rep. Rev. Sect Phys. Lett. 525, 1–166 (2013)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987)zbMATHGoogle Scholar
  9. 9.
    Cushing, J.T., McMullin, E. (eds.): Philosophical Consequences of Quantum Theory: Reflections on Bell’s Theorem. Notre Dame University Press, Notre Dame (1989)Google Scholar
  10. 10.
    Ellis, J., Amati, D. (eds.): Quantum Reflections. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  11. 11.
    Deleuze, G., and Guattari, F.: What is Philosophy? Columbia University Press, New York (1994). Translated by Tomlinson, H., and Burchell, GGoogle Scholar
  12. 12.
    Butterfield, J., Isham, C.J.: Spacetime and the philosophical challenge of quantum gravity. In: Callender, G., Huggett, N. (eds.) Physics Meets Philosophy at the Planck Scale: Contemporary Theories of Quantum Gravity, pp. 33–89. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  13. 13.
    Schrödinger, E.: The present situation in quantum mechanics (1935). In: Wheeler, J.A., Zurek, W.H. (eds.) Quantum Theory and Measurement, pp. 152–167. Princeton University Press, Princeton (1983)Google Scholar
  14. 14.
    Kant, I.: Critique of Pure Reason, Cambridge University Press, Cambridge (1997). Translated by Guyer. P., and Wood, A. WGoogle Scholar
  15. 15.
    D’Ariano, G.M.: Physics as quantum information processing: quantum fields as quantum automata. Found. Probab. Phys. 6 AIP Conf. Proc. 1424, 371 (2012)ADSGoogle Scholar
  16. 16.
    ‘t Hooft, G., “The Cellular Automaton Interpretation of Quantum Mechanics, A View on the Quantum Nature of our Universe, Compulsory or Impossible?” ITP-UU-14/15, SPIN-14/13. arXiv:1405.1548 (2014)
  17. 17.
    Hacking, I.: Representing and Intervening. Introductory Topics in the Philosophy of Natural Science. Cambridge University Press, Cambridge (1983)CrossRefGoogle Scholar
  18. 18.
    Emergent quantum mechanics. J. Phys. (2013)
  19. 19.
  20. 20.
    Dirac, P.A.M.: The physical interpretation of the quantum dynamics. Proc. R. Soc. Lond. A 113, 621 (1927)zbMATHCrossRefADSGoogle Scholar
  21. 21.
    Dirac, P.A.M.: The Principles of Quantum Mechanics, Oxford Clarendon, Oxford (1958), report (1995)Google Scholar
  22. 22.
    Von Neumann, J.: Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton, (1932). Translated by Beyer, R. T. Report (1983)Google Scholar
  23. 23.
    Jaeger, G.: Quantum Objects: Non-Local Correlation, Causality and Objective Indefiniteness in the Quantum World. Springer, Berlin (2013)Google Scholar
  24. 24.
    Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  25. 25.
    Khrennikov, A.: Interpretations of Probability. de Gruyter, Berlin (2009)zbMATHCrossRefGoogle Scholar
  26. 26.
    Háyek, A.: Interpretation of Probability, Stanford Encyclopedia of Philosophy (Winter 2014 edition), E. N. Zalta (ed.) (2014)
  27. 27.
    De Finetti, B.: Philosophical Lectures on Probability, Springer, Berlin (2008). Translated by Hosni, HGoogle Scholar
  28. 28.
    Bohm, D., Hiley, B.: The Undivided Universe: An Ontological Interpretation of Quantum Mechanics. Routledge, London (1993)Google Scholar
  29. 29.
    Plotnitsky, A.: Niels Bohr and Complementarity: An Introduction. Springer, Berlin (2012)CrossRefGoogle Scholar
  30. 30.
    Folse, H. J.: The methodological lesson of complementarity: Bohr’s naturalistic epistemology. Phys. Scr. T163, 014001 (2014). doi: 10.1088/0031-8949/2014/T163/014001
  31. 31.
    Pauli, W.: Writings on Physics and Philosophy. Springer, Berlin (1994)zbMATHCrossRefGoogle Scholar
  32. 32.
    George, A.: Louis de Broglie Physicien et Penseur, “Les Savants et le monde”. A. Michel, Paris (1953)Google Scholar
  33. 33.
    Einstein, A.: Autobiographical Notes, Open Court, La Salle (1949). Translated by Schilpp, P. AGoogle Scholar
  34. 34.
    Bohr, N.: 1938 The causality problem in atomic physics. In: Faye, J., Folse, H.J. (eds.) The Philosophical Writings of Niels Bohr, Volume 4: Causality and Complementarity, Supplementary Papers, pp. 94–121. Ox Bow Press, Woodbridge, CT (1987)Google Scholar
  35. 35.
    Schwinger, J.: Quantum Mechanics: Symbolism of Atomic Measurement. Springer, New York (2001)CrossRefGoogle Scholar
  36. 36.
    Fuchs, C., Mermin, N. D., and Schack, R.: An Introduction to QBism with an Application to the Locality of Quantum Mechanics, arXiv:1131.5253 [quant-ph] Nov (2013)
  37. 37.
    Mermin, N. D.: Why QBism is not the Copenhagen interpretation and what John Bell might have thought of it, arXiv:1409.2454v1 [quantum-ph] 8 Sep 2014
  38. 38.
    Tonomura, A., Endo, J., Matsuda, T., Kawasaki, T., Ezawa, H.: Demonstration of single-electron buildup of an interference pattern. Am. J. Phys. 57, 117–120 (1989)CrossRefADSGoogle Scholar
  39. 39.
    Einstein, A.: Physics and reality. J. Frankl. Inst. 221, 349–382 (1936)CrossRefADSGoogle Scholar
  40. 40.
    Born, M.: The Einstein-Born Letters, Walker, New York (2005). Translated by Born, IGoogle Scholar
  41. 41.
    Khrennikov, A.: A pre-quantum classical statistical model with infinite-dimensional phase space. J. Phys. A Math. Gen. 38, 9051–9073 (2005)zbMATHMathSciNetCrossRefADSGoogle Scholar
  42. 42.
    Khrennikov, A.: Detection model based on representation of quantum particles by classical random fields: Born’s rule and beyond. Found. Phys. 39, 997–1022 (2009)zbMATHMathSciNetCrossRefADSGoogle Scholar
  43. 43.
    Khrennikov, A.: Born’s rule from measurements of classical signals by threshold detectors which are properly calibrated. J. Mod. Opt. 59, 667–678 (2012)CrossRefADSGoogle Scholar
  44. 44.
    Khrennikov, A.: Quantum probabilities and violation of CHSH-inequality from classical random signals and threshold type detection scheme. Prog. Theor. Phys. 128(1), 31–58 (2012)zbMATHCrossRefADSGoogle Scholar
  45. 45.
    Khrennikov, A.: Beyond Quantum. Pan Stanford Publishing, Singapore (2014)zbMATHCrossRefGoogle Scholar
  46. 46.
    De Raedt, H., Jin, F., Michielsen, K.: Data analysis of Einstein-Podolsky-Rosen-Bohm laboratory experiments. In: Proceeding of SPIE 8832, 88321N (2013)Google Scholar
  47. 47.
    Schrödinger, E.: Zur Einsteinschen Gastheorie. Phys. Z. 27, 95 (1926)zbMATHGoogle Scholar
  48. 48.
    Einstein, A., Infeld, L.: Evolution of Physics: The Growth of Ideas from Early Concepts to Relativity and Quanta. Simon and Schuster, New York (1961)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Theory and Cultural Studies ProgramPurdue UniversityWest LafayetteUSA
  2. 2.International Center for Mathematical Modeling in Physics, Engineering, Economics, and Cognitive ScienceLinnaeus UniversityVäxjö-KalmarSweden

Personalised recommendations