Advertisement

Foundations of Physics

, Volume 45, Issue 10, pp 1362–1378 | Cite as

Quantum Information Biology: From Information Interpretation of Quantum Mechanics to Applications in Molecular Biology and Cognitive Psychology

  • Masanari Asano
  • Irina Basieva
  • Andrei KhrennikovEmail author
  • Masanori Ohya
  • Yoshiharu Tanaka
  • Ichiro Yamato
Article

Abstract

We discuss foundational issues of quantum information biology (QIB)—one of the most successful applications of the quantum formalism outside of physics. QIB provides a multi-scale model of information processing in bio-systems: from proteins and cells to cognitive and social systems. This theory has to be sharply distinguished from “traditional quantum biophysics”. The latter is about quantum bio-physical processes, e.g., in cells or brains. QIB models the dynamics of information states of bio-systems. We argue that the information interpretation of quantum mechanics (its various forms were elaborated by Zeilinger and Brukner, Fuchs and Mermin, and D’ Ariano) is the most natural interpretation of QIB. Biologically QIB is based on two principles: (a) adaptivity; (b) openness (bio-systems are fundamentally open). These principles are mathematically represented in the framework of a novel formalism— quantum adaptive dynamics which, in particular, contains the standard theory of open quantum systems.

Keywords

Quantum biological information Quantum adaptive dynamics  Open quantum systems Information interpretation QBism Molecular biology Genetics Cognition 

References

  1. 1.
    Asano, M., Ohya, M., Khrennikov, A.: Quantum-like model for decision making process in two players game. Found. Phys. 41, 538–548 (2010)MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    Asano, M., Ohya, M., Tanaka, Y., Khrennikov, A., Basieva, I.: On application of Gorini–Kossakowski–Sudarshan–Lindblad equation in cognitive psychology. Open Syst. Inf. Dyn. 17, 1–15 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Basieva, I., Khrennikov, A., Ohya, M., Yamato, I.: Quantum-like interference effect in gene expression glucose-lactose destructive interference. Syst. Synth. Biol. 5, 1–10 (2010)Google Scholar
  4. 4.
    Asano, M., Ohya, M., Tanaka, Y., Khrennikov, A., Basieva, I.: Dynamics of entropy in quantum-like model of decision making. J. Theor. Biol. 281, 56–64 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Asano, M., Basieva, I., Khrennikov, A., Ohya, M., Yamato, I.: Non-Kolmogorovian approach to the context-dependent systems breaking the classical probability law. Found. Phys. 43, 895–911 (2013). 2083–2099 (2012)zbMATHMathSciNetCrossRefADSGoogle Scholar
  6. 6.
    Asano, M., Basieva, I., Khrennikov, A., Ohya, M., Tanaka, Y.: Quantum-like generalization of the Bayesian updating scheme for objective and subjective mental uncertainties. J. Math. Psychol. 166–175, 56 (2012)MathSciNetGoogle Scholar
  7. 7.
    Asano, M., Basieva, I., Khrennikov, A., Ohya, M., Tanaka, Y., Yamato, I.: Quantum-like model for the adaptive dynamics of the genetic regulation of E. coli’s metabolism of glucose/lactose. Syst. Synth. Biol. 6, 1–7 (2012)CrossRefGoogle Scholar
  8. 8.
    Asano, M., Basieva, I.I., Khrennikov, A., Ohya, M., Tanaka, Y., Yamato, I.: A model of epigenetic evolution based on theory of open quantum systems. Syst. Synth. Biol. 7, 161–173 (2013)CrossRefGoogle Scholar
  9. 9.
    Asano, M., Khrennikov, A., Ohya, M., Tanaka, Y., Yamato, I.: Violation of contextual generalization of the LeggettGarg inequality for recognition of ambiguous figures. Phys. Scr. T 163, 014006 (2014)CrossRefADSGoogle Scholar
  10. 10.
    Asano, M., Khrennikov, A., Ohya, M., Tanaka, Y., Yamato, I.: Quantum Adaptivity in Biology: from Genetics to Cognition. Springer, Heidelberg (2015)Google Scholar
  11. 11.
    Arndt, M., Juffmann, T.H., Vedral, V.: Quantum physics meets biology. HFSP J 3(6), 386400 (2009)CrossRefGoogle Scholar
  12. 12.
    Khrennikov, A.: On quantum-like probabilistic structure of mental information. Open Syst. Inf. Dyn. 11(3), 267–275 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Khrennikov, A.: Quantum-like brain: interference of minds. BioSystems 84, 225–241 (2006)CrossRefGoogle Scholar
  14. 14.
    Khrennikov, A.: Ubiquitous Quantum Structure: from Psychology to Finance. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Conte, E., Todarello, O., Federici, A., Vitiello, F., Lopane, M., Khrennikov, A., Zbilut, J.P.: Some remarks on an experiment suggesting quantum-like behavior of cognitive entities and formulation of an abstract quantum mechanical formalism to describe cognitive entity and its dynamics. Chaos Solitons Fractals 31, 1076–1088 (2006)CrossRefADSGoogle Scholar
  16. 16.
    Conte, E., Khrennikov, A., Todarello, O., Federici, A., Mendolicchio, L., Zbilut, J.P.: A preliminary experimental verification on the possibility of Bell inequality violation in mental states. Neuroquantology 6, 214–221 (2008)Google Scholar
  17. 17.
    Busemeyer, J.R., Bruza, P.D.: Quantum Models of Cognition and Decision. Cambridge Press, Cambridge (2012)CrossRefGoogle Scholar
  18. 18.
    Busemeyer, J.B., Wang, Z., Townsend, J.T.: Quantum dynamics of human decision making. J. Math. Psychol. 50, 220–241 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Dzhafarov, E.N., Kujala, J.V.: Selectivity in probabilistic causality: where psychology runs into quantum physics. J. Math. Psychol. 56, 54–63 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Acacio de Barros, J., Suppes, P.: Quantum mechanics, interference, and the brain. J. Math. Psychcol. 53, 306–313 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Acacio de Barros, J.: Quantum-like model of behavioral response computation using neural oscillators. Biosystems 110, 171–182 (2012)CrossRefGoogle Scholar
  22. 22.
    Acacio de Barros, J.: 2012 Joint probabilities and quantum cognition. In: A. Khrennikov, H. Atmanspacher, A. Migdall and S. Polyakov. (eds.) Quantum Theory: Reconsiderations of Foundations 6. Special Section: Quantum-Like Decision Making: from Biology to Behavioral Economics, AIP Conference Proceedings 1508, pp. 98–104Google Scholar
  23. 23.
    Atmanspacher, H., Filk, T., Römer, H.: Complementarity in Bistable Perception, Recasting Reality, pp. 135–150. Springer, Berlin (2009)CrossRefGoogle Scholar
  24. 24.
    Atmanspacher, H., Filk, Th.: 2012 Temporal nonlocality in bistable perception. In: A. Khrennikov, H. Atmanspacher, A. Migdall and S. Polyakov. (eds.) Quantum Theory: Reconsiderations of Foundations—6, Special Section: Quantum-like decision making: from biology to behavioral economics, AIP Conference Proeeding. 1508, pp. 79–88Google Scholar
  25. 25.
    Busemeyer, J.R., Pothos, E.M., Franco, R., Trueblood, J.: A quantum theoretical explanation for probability judgment errors. Psychol. Rev. 118, 193–218 (2011)CrossRefGoogle Scholar
  26. 26.
    Cheon, T., Takahashi, T.: Interference and inequality in quantum decision theory. Phys. Lett. A 375, 100–104 (2010)zbMATHMathSciNetCrossRefADSGoogle Scholar
  27. 27.
    Cheon, T., Tsutsui, I.: Classical and quantum contents of solvable game theory on Hilbert space. Phys. Lett. A 348, 147–152 (2006)zbMATHCrossRefADSGoogle Scholar
  28. 28.
    Fichtner, K.H., Fichtner, L., Freudenberg, W., Ohya, M.: On a quantum model of the recognition process. QP-PQ Quantum Prob. White Noise Anal. 21, 64–84 (2008)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Haven, E., Khrennikov, A.: Quantum Social Science. Cambridge Press, Cambridge (2012)Google Scholar
  30. 30.
    Khrennikova, P., Haven, E., Khrennikov, A.: An application of the theory of open quantum systems to model the dynamics of party governance in the US political system. Int. J. Theor. Phys. 53, 1346–1360 (2014)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Khrennikova, P.: Evolution of quantum-like modeling in decision making processes. AIP Conf. Proc. 1508, 108–112 (2012)CrossRefADSGoogle Scholar
  32. 32.
    Ohya, M., Volovich, I.: Mathematical foundations of quantum information and computation and its applications to nano- and bio-systems. Springer, Heidelberg (2011)zbMATHCrossRefGoogle Scholar
  33. 33.
    Tegmark, M.: Importance of quantum decoherence in brain processes. Phys. Rev. E 61(4), 41944206 (2000)CrossRefGoogle Scholar
  34. 34.
    Penrose, R.: The Emperor’s New Mind. Oxford University Press, New York (1989)Google Scholar
  35. 35.
    Hameroff, S.: Quantum coherence in microtubules. A neural basis for emergent consciousness? J. Cons. Stud. 1, 91–118 (1994)Google Scholar
  36. 36.
    Khrennikov, A.: Quantum-like model of processing of information in the brain based on classical electromagnetic field. Biosystems 105(3), 250–262 (2011)CrossRefGoogle Scholar
  37. 37.
    Plotnitsky, A.: Reading Bohr: Physics and Philosophy. Springer, Heidelberg (2006)Google Scholar
  38. 38.
    Plotnitsky, A.: Epistemology and Probability: Bohr, Heisenberg, Schrödinger, and the Nature of Quantum-Theoretical Thinking. Springer, Heidelberg (2009)Google Scholar
  39. 39.
    Chiribella, G., D’Ariano, G.M., Perinotti, P.: Probabilistic theories with purification phys. Rev. A 81, 062348 (2010)CrossRefGoogle Scholar
  40. 40.
    D’ Ariano, G.M.: Operational axioms for quantum mechanics, in Adenier et al., Foundations of Probability and Physics-3.AIP Conference Proceeding vol. 889, pp. 79–105 (2007)Google Scholar
  41. 41.
    Chiribella, G., D’Ariano, G.M., Perinotti, P.: Informational axioms for quantum theory in Foundations of Probability and Physics—6. AIP Conference Proceeding vol. 1424, p. 270 (2012)Google Scholar
  42. 42.
    D’Ariano, G.M.: Physics as Information Processing, in Advances in Quantum Theory, AIP Conference Proceeding 1327 7 (2011); arXiv:1012.0535
  43. 43.
    Zeilinger, A.: A foundational principle for quantum mechanics. Found. Phys. 29(4), 631–643 (1999)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Zeilinger, A.: Dance of the Photons: from Einstein to Quantum Teleportation. Farrar, Straus and Giroux, New York (2010)Google Scholar
  45. 45.
    Brukner, C., Zeilinger, A.: Malus’ law and quantum information. Acta Phys. Slovava 49(4), 647–652 (1999)Google Scholar
  46. 46.
    Brukner, C., Zeilinger, A.: Operationally invariant information in quantum mechanics. Phys. Rev. Lett. 83(17), 3354–3357 (1999)zbMATHMathSciNetCrossRefADSGoogle Scholar
  47. 47.
    Brukner, C., Zeilinger, A.: Information invariance and quantum probabilities. Found. Phys. 39, 677 (2009)zbMATHMathSciNetCrossRefADSGoogle Scholar
  48. 48.
    Caves, C.M., Fuchs, C.A., Schack, R.: Quantum probabilities as Bayesian probabilities. Phys. Rev. A 65, 022305 (2002)MathSciNetCrossRefADSGoogle Scholar
  49. 49.
    Fuchs, C.A.: Quantum mechanics as quantum information (and only a little more). In: Khrennikov, A. (ed.), Quantum Theory: Reconsideration of Foundations, Ser. Math. Modeling 2, Växjö University Press, Växjö, pp. 463–543 (2002)Google Scholar
  50. 50.
    Fuchs, C. A.: The anti-Växjö interpretation of quantum mechanics. Quantum Theory: Reconsideration of Foundations, pp. 99–116. Ser. Math. Model. 2, Växjö University Press, Växjö (2002)Google Scholar
  51. 51.
    Fuchs, ChA, Schack, R.: A quantum-Bayesian route to quantum-state space. Found. Phys. 41, 345–356 (2011)zbMATHMathSciNetCrossRefADSGoogle Scholar
  52. 52.
    E. Schrdinger, Die gegenwrtige Situation in der Quantenmechanik. Naturwissenschaften 23,807–812; 823–828; 844–849 (1935)Google Scholar
  53. 53.
    Fuchs, Ch.A.: QBism, the perimeter of quantum Bayesianism. arXiv:1003.5209
  54. 54.
    Von Neuman, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)Google Scholar
  55. 55.
    ’t Hooft, G.: The free-will postulate in quantum mechanics. Herald of Russian Academy of Science vol. 81, pp. 907–911 (2011); ArXiv: arXiv:quant-ph/0701097v1 (2007)
  56. 56.
    ’t Hooft, G.: Quantum gravity as a dissipative deterministic system. ArXiv: arXiv:gr-qc/9903084 (1999)
  57. 57.
    ’t Hooft, G.: The mathematical basis for deterministic quantum mechanics. ArXiv: arXiv:quant-ph/0604008 (2006)
  58. 58.
    Kolmogoroff, A.N.: Grundbegriffe der Wahrscheinlichkeitsrechnung (Berlin: Springer Verlag); English translation: Kolmogorov A N 1956 Foundations of Theory of Probability. Chelsea Publishing Company, New York (1933)Google Scholar
  59. 59.
    Khrennikov, A.: Interpretations of Probability, 2nd edn. De Gruyter, Berlin (2010)Google Scholar
  60. 60.
    Khrennikov A, Introduction to foundations of probability and randomness (for students in physics). Lectures given at the Institute of Quantum Optics and Quantum Information, Austrian Academy of Science, Lecture-1: Kolmogorov and von Mises. arXiv:1410.5773 [quant-ph]
  61. 61.
    Khrennikov, A.: Fundamental Theories of Physics. Information dynamics in cognitive, psychological, social, and anomalous phenomena. Kluwer, Dordreht (2004)Google Scholar
  62. 62.
    Khrennikov, A.: Modelling of psychological behavior on the basis of ultrametric mental space: encoding of categories by balls. P-Adic Numbers Ultrametric Anal. Appl. 2(1), 1–20 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  63. 63.
    Khrennikov, A., Basieva, I., Dzhafarov, E.N., Busemeyer, J.R.: Quantum models for psychological measurements : an unsolved problem. PLoS One. 9. Article ID: e110909 (2014)Google Scholar
  64. 64.
    Acacio de Barros, J.: Beyond the quantum formalism: consequences of a neural-oscillator model to quantum cognition. Advances in Cognitive Neurodynamics (IV). pp. 401–404. Springer, Netherlands (2015)Google Scholar
  65. 65.
    Acacio de Barros, J.: Decision making for inconsistent expert judgments using negative probabilities. In Quantum Interaction, pp. 257–269. Springer, Berlin-Heidelberg, (2014)Google Scholar
  66. 66.
    Khrennikov, A.: Bell-boole inequality: nonlocality or probabilistic incompatibility of random variables? Entropy 10, 19–32 (2008)zbMATHMathSciNetCrossRefADSGoogle Scholar
  67. 67.
    Hasegawa, Y., Loidl, R., Badurek, G., Filipp, S., Klepp, J., Rauch, H.: Quantum contextuality induced by spin-path entanglement in single-neutrons. Acata Phys. Hung. A Heavy Ion Phys. 26(1–2), 157–164 (2006)Google Scholar
  68. 68.
    Weihs, G., Jennewein, T., Simon, C., Weinfurter, R., Zeilinger, A.: Phys. Rev. Lett. 81, pp. 5039–5043 (1998)Google Scholar
  69. 69.
    Giustina, M., Mech, A.l., Ramelow, S., Wittmann, B., Kofler, J., Beyer, J., Lita, A., Calkins, B., Gerrits, Th., Woo Nam, S., Ursin, R., Zeilinger, A.: Nature 497, pp. 227–230 (2013)Google Scholar
  70. 70.
    Christensen, B.G., McCusker, K.T., Altepeter, J., Calkins, B., Gerrits, T., Lita, A., Miller, A., Shalm, L.K., Zhang, Y., Nam, S.W., Brunner, N., Lim, C.C.W., Gisin, N., Kwiat, P.G.: Phys. Rev. Lett. 111, pp. 1304–1306 (2013)Google Scholar
  71. 71.
    Khrennikov, Y.A., Volovich, I.V.: Local Realism, Contextualism and Loopholes in Bell‘s Experiments. Proc. Conf. Foundations of Probability and Physics-2, Ser. Math. Modelling in Phys., Eng., and Cogn. Sc., 5, pp. 325–344, Växjö University Press, 2002Google Scholar
  72. 72.
    Dragovich, B., Khrennikov, A., Kozyrev, S.V., Volovich, I.V.: On p-adic mathematical physics P-Adic Numbers, Ultrametric Analysis, and Applications, 1, N 1, pp. 1–17 (2009); arXiv:org/pdf/0904.4205.pdf
  73. 73.
    Acacio de Barros, J., Oas, G.: Negative probabilities and counter-factual reasoning in quantum cognition. Phys. Scr. T163, 014008 (2014)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Masanari Asano
    • 1
  • Irina Basieva
    • 2
  • Andrei Khrennikov
    • 2
    Email author
  • Masanori Ohya
    • 3
  • Yoshiharu Tanaka
    • 3
  • Ichiro Yamato
    • 4
  1. 1.Liberal Arts DivisionTokuyama College of TechnologyShunanJapan
  2. 2.International Center for Mathematical Modeling in Physics and Cognitive ScienceLinnaeus UniversityVäxjöSweden
  3. 3.Department of Information SciencesTokyo University of ScienceTokyoJapan
  4. 4.Department of Biological Science and TechnologyTokyo University of ScienceTokyoJapan

Personalised recommendations