Advertisement

Foundations of Physics

, Volume 45, Issue 10, pp 1311–1329 | Cite as

On Entropy of Quantum Compound Systems

  • Noboru WatanabeEmail author
Article

Abstract

We review some notions for general quantum entropies. The entropy of the compound systems is discussed and a numerical computation of the quantum dynamical systems is carried for the noisy optical channel.

Keywords

General quantum entropy Quantum dynamical entropy Quantum information theory 

References

  1. 1.
    Accardi, L., Ohya, M.: Compound channels, transition expectation and liftings. Appl. Math. Optim. 39, 33–59 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Accardi, L., Ohya, M., Watanabe, N.: Dynamical entropy through quantum Markov chain. Open Syst. Inf. Dyn. 4, 71–87 (1997)zbMATHCrossRefGoogle Scholar
  3. 3.
    Accardi, L., Ohya, M., Watanabe, N.: Note on quantum dynamical entropies. Rep. Math. Phys. 38, 457–469 (1996)zbMATHMathSciNetCrossRefADSGoogle Scholar
  4. 4.
    Alicki, R., Fannes, M.: Defining quantum dynamical entropy. Lett. Math. Phys. 32, 75–82 (1994)zbMATHMathSciNetCrossRefADSGoogle Scholar
  5. 5.
    Araki, H.: Relative entropy for states of von Neumann algebras. Publ. RIMS Kyoto Univ. 11, 809–833 (1976)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Benatti, F.: Deterministic Chaos in Infinite Quantum Systems. Springer, Berlin (1993)CrossRefGoogle Scholar
  7. 7.
    Choda, M.: Entropy for extensions of Bernoulli shifts. Ergod. Theory Dyn. Syst. 16(6), 1197–1206 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Connes, A., Narnhoffer, H., Thirring, W.: Dynamical entropy of C*algebras and von Neumann algebras. Commun. Math. Phys. 112, 691–719 (1987)zbMATHCrossRefADSGoogle Scholar
  9. 9.
    Connes, A., Störmer, E.: Entropy for automorphisms of von Neumann algebras. Acta Math. 134, 289–306 (1975)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Emch, G.G.: Positivity of the K-entropy on non-abelian K-flows. Z. Wahrscheinlichkeitstheory verw. Gebiete 29, 241 (1974)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Fichtner, K.H., Freudenberg, W., Liebscher, V.: Beam splittings and time evolutions of Boson systems, Fakultat fur Mathematik und Informatik, Math/Inf/96/39, Jena, 105 (1996)Google Scholar
  12. 12.
    Hudetz, T.: Topological entropy for appropriately approximated C*-algebras. J. Math. Phys. 35(8), 4303–4333 (1994)zbMATHMathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Ingarden, R.S., Kossakowski, A., Ohya, M.: Information Dynamics and Open Systems. Kluwer, Dordrecht (1997)zbMATHCrossRefGoogle Scholar
  14. 14.
    Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 3, 275–278 (1972)zbMATHCrossRefADSGoogle Scholar
  15. 15.
    Khrennikov, A.: Contextual Approach to Quantum Formalism. Series of fundamental theories of physics. Springer, Berlin (2009)zbMATHCrossRefGoogle Scholar
  16. 16.
    Khrennikov, A.: A classical field theory comeback? The classical field viewpoint on triparticle entanglement. Phys. Scripta, T143, Article Number: 014013 (2011). doi: 10.1088/0031-8949/2011/T143/014013
  17. 17.
    Kolmogorov, A.N.: Theory of transmission of information. Am. Math. Soc. Transl. Ser. 2 33, 291 (1963)zbMATHGoogle Scholar
  18. 18.
    von Neumann, J.: Die Mathematischen Grundlagen der Quantenmechanik. Springer, Berlin (1932)Google Scholar
  19. 19.
    Kossakowski, A., Ohya, M., Watanabe, N.: Quantum dynamical entropy for completely positive map. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2(2), 267–282 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Ohya, M.: Quantum ergodic channels in operator algebras. J. Math. Anal. Appl. 84, 318–328 (1981)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Ohya, M.: On compound state and mutual information in quantum information theory. IEEE Trans. Inf. Theory 29, 770–774 (1983)zbMATHCrossRefGoogle Scholar
  22. 22.
    Ohya, M.: Note on quantum probability. L. Nuovo Cimento 38, 402–404 (1983)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ohya, M.: Some aspects of quantum information theory and their applications to irreversible processes. Rep. Math. Phys. 27, 19–47 (1989)zbMATHMathSciNetCrossRefADSGoogle Scholar
  24. 24.
    Ohya, M.: State change, complexity and fractal in quantum systems. Quantum Commun. Meas. 2, 309–320 (1995)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Ohya, M., Petz, D.: Quantum Entropy and Its Use. Springer, Berlin (1993)zbMATHCrossRefGoogle Scholar
  26. 26.
    Ohya, M., Watanabe, N.: Foundation of Quantum Communication Theory (in Japanese). Makino Publishing Company, Tokyo (1998)Google Scholar
  27. 27.
    Ohya, M., Watanabe, N.: Construction and analysis of a mathematical model in quantum communication processes. Electron. Commun. Jpn. Part 1 68(2), 29–34 (1985)CrossRefGoogle Scholar
  28. 28.
    Ohya, M., Volovich, I.: Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Bio-systems. Springer, Dordrecht (2011)zbMATHCrossRefGoogle Scholar
  29. 29.
    Park, Y.M.: Dynamical entropy of generalized quantum Markov chains. Lett. Math. Phys. 32, 63–74 (1994)zbMATHMathSciNetCrossRefADSGoogle Scholar
  30. 30.
    Schatten, R.: Norm Ideals of Completely Continuous Operators. Springer, Berlin (1970)zbMATHCrossRefGoogle Scholar
  31. 31.
    Tuyls, P.: Comparing quantum dynamical entropies. Banach Centre Publ. 43, 411–420 (1998)MathSciNetGoogle Scholar
  32. 32.
    Umegaki, H.: Conditional expectations in an operator algebra IV (entropy and information). Kodai Math. Sem. Rep. 14, 59–85 (1962)zbMATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Uhlmann, A.: Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in interpolation theory. Commun. Math. Phys. 54, 21–32 (1977)zbMATHMathSciNetCrossRefADSGoogle Scholar
  34. 34.
    Voiculescu, D.: Dynamical approximation entropies and topological entropy in operator algebras. Commun. Math. Phys. 170, 249–281 (1995)zbMATHMathSciNetCrossRefADSGoogle Scholar
  35. 35.
    Watanabe, N.: Note on entropies of quantum dynamical systems. Found. Phys. 41, 549–563 (2011). doi: 10.1007/s10701-010-9455-x zbMATHMathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Information SciencesTokyo University of ScienceNodaJapan

Personalised recommendations