Foundations of Physics

, Volume 45, Issue 10, pp 1311–1329 | Cite as

On Entropy of Quantum Compound Systems

  • Noboru WatanabeEmail author


We review some notions for general quantum entropies. The entropy of the compound systems is discussed and a numerical computation of the quantum dynamical systems is carried for the noisy optical channel.


General quantum entropy Quantum dynamical entropy Quantum information theory 


  1. 1.
    Accardi, L., Ohya, M.: Compound channels, transition expectation and liftings. Appl. Math. Optim. 39, 33–59 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Accardi, L., Ohya, M., Watanabe, N.: Dynamical entropy through quantum Markov chain. Open Syst. Inf. Dyn. 4, 71–87 (1997)zbMATHCrossRefGoogle Scholar
  3. 3.
    Accardi, L., Ohya, M., Watanabe, N.: Note on quantum dynamical entropies. Rep. Math. Phys. 38, 457–469 (1996)zbMATHMathSciNetCrossRefADSGoogle Scholar
  4. 4.
    Alicki, R., Fannes, M.: Defining quantum dynamical entropy. Lett. Math. Phys. 32, 75–82 (1994)zbMATHMathSciNetCrossRefADSGoogle Scholar
  5. 5.
    Araki, H.: Relative entropy for states of von Neumann algebras. Publ. RIMS Kyoto Univ. 11, 809–833 (1976)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Benatti, F.: Deterministic Chaos in Infinite Quantum Systems. Springer, Berlin (1993)CrossRefGoogle Scholar
  7. 7.
    Choda, M.: Entropy for extensions of Bernoulli shifts. Ergod. Theory Dyn. Syst. 16(6), 1197–1206 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Connes, A., Narnhoffer, H., Thirring, W.: Dynamical entropy of C*algebras and von Neumann algebras. Commun. Math. Phys. 112, 691–719 (1987)zbMATHCrossRefADSGoogle Scholar
  9. 9.
    Connes, A., Störmer, E.: Entropy for automorphisms of von Neumann algebras. Acta Math. 134, 289–306 (1975)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Emch, G.G.: Positivity of the K-entropy on non-abelian K-flows. Z. Wahrscheinlichkeitstheory verw. Gebiete 29, 241 (1974)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Fichtner, K.H., Freudenberg, W., Liebscher, V.: Beam splittings and time evolutions of Boson systems, Fakultat fur Mathematik und Informatik, Math/Inf/96/39, Jena, 105 (1996)Google Scholar
  12. 12.
    Hudetz, T.: Topological entropy for appropriately approximated C*-algebras. J. Math. Phys. 35(8), 4303–4333 (1994)zbMATHMathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Ingarden, R.S., Kossakowski, A., Ohya, M.: Information Dynamics and Open Systems. Kluwer, Dordrecht (1997)zbMATHCrossRefGoogle Scholar
  14. 14.
    Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 3, 275–278 (1972)zbMATHCrossRefADSGoogle Scholar
  15. 15.
    Khrennikov, A.: Contextual Approach to Quantum Formalism. Series of fundamental theories of physics. Springer, Berlin (2009)zbMATHCrossRefGoogle Scholar
  16. 16.
    Khrennikov, A.: A classical field theory comeback? The classical field viewpoint on triparticle entanglement. Phys. Scripta, T143, Article Number: 014013 (2011). doi: 10.1088/0031-8949/2011/T143/014013
  17. 17.
    Kolmogorov, A.N.: Theory of transmission of information. Am. Math. Soc. Transl. Ser. 2 33, 291 (1963)zbMATHGoogle Scholar
  18. 18.
    von Neumann, J.: Die Mathematischen Grundlagen der Quantenmechanik. Springer, Berlin (1932)Google Scholar
  19. 19.
    Kossakowski, A., Ohya, M., Watanabe, N.: Quantum dynamical entropy for completely positive map. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2(2), 267–282 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Ohya, M.: Quantum ergodic channels in operator algebras. J. Math. Anal. Appl. 84, 318–328 (1981)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Ohya, M.: On compound state and mutual information in quantum information theory. IEEE Trans. Inf. Theory 29, 770–774 (1983)zbMATHCrossRefGoogle Scholar
  22. 22.
    Ohya, M.: Note on quantum probability. L. Nuovo Cimento 38, 402–404 (1983)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ohya, M.: Some aspects of quantum information theory and their applications to irreversible processes. Rep. Math. Phys. 27, 19–47 (1989)zbMATHMathSciNetCrossRefADSGoogle Scholar
  24. 24.
    Ohya, M.: State change, complexity and fractal in quantum systems. Quantum Commun. Meas. 2, 309–320 (1995)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Ohya, M., Petz, D.: Quantum Entropy and Its Use. Springer, Berlin (1993)zbMATHCrossRefGoogle Scholar
  26. 26.
    Ohya, M., Watanabe, N.: Foundation of Quantum Communication Theory (in Japanese). Makino Publishing Company, Tokyo (1998)Google Scholar
  27. 27.
    Ohya, M., Watanabe, N.: Construction and analysis of a mathematical model in quantum communication processes. Electron. Commun. Jpn. Part 1 68(2), 29–34 (1985)CrossRefGoogle Scholar
  28. 28.
    Ohya, M., Volovich, I.: Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Bio-systems. Springer, Dordrecht (2011)zbMATHCrossRefGoogle Scholar
  29. 29.
    Park, Y.M.: Dynamical entropy of generalized quantum Markov chains. Lett. Math. Phys. 32, 63–74 (1994)zbMATHMathSciNetCrossRefADSGoogle Scholar
  30. 30.
    Schatten, R.: Norm Ideals of Completely Continuous Operators. Springer, Berlin (1970)zbMATHCrossRefGoogle Scholar
  31. 31.
    Tuyls, P.: Comparing quantum dynamical entropies. Banach Centre Publ. 43, 411–420 (1998)MathSciNetGoogle Scholar
  32. 32.
    Umegaki, H.: Conditional expectations in an operator algebra IV (entropy and information). Kodai Math. Sem. Rep. 14, 59–85 (1962)zbMATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Uhlmann, A.: Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in interpolation theory. Commun. Math. Phys. 54, 21–32 (1977)zbMATHMathSciNetCrossRefADSGoogle Scholar
  34. 34.
    Voiculescu, D.: Dynamical approximation entropies and topological entropy in operator algebras. Commun. Math. Phys. 170, 249–281 (1995)zbMATHMathSciNetCrossRefADSGoogle Scholar
  35. 35.
    Watanabe, N.: Note on entropies of quantum dynamical systems. Found. Phys. 41, 549–563 (2011). doi: 10.1007/s10701-010-9455-x zbMATHMathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Information SciencesTokyo University of ScienceNodaJapan

Personalised recommendations