Skip to main content
Log in

Quantum Analysis of \(k=-1\) Robertson–Walker Universe

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The \((k=-1)\)-Robertson–Walker spacetime is under investigation. With the derived Hamilton operator, we are solving the Wheeler–De Witt Equation and its Schrödinger-like extension, for physically important forms of the effective potential. The closed form solutions, expressed in terms of Heun’s functions, allow us to comment on the occurrence of Universe from highly probable quantum states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Gupta, S.N.: Gravitation and Electromagnetism. Phys. Rev. 96, 1683–1685 (1954)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Fang, J., Fronsdal, C.: Deformations of gauge groups. Gravitation. J. Math. Phys 20, 2264–2270 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Smolin, L.: Linking topological quantum field theory and nonperturbative quantum gravity. J. Math. Phys. 36, 6417–6455 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Ashtekar, A., Singh, P.: Loop Quantum Cosmology: A Status Report. Class. Quant. Grav. 28, 213001 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  5. Chiou, Dah-Wei: Loop Quantum Gravity. Int. J. Mod. Phys. D 24, 1530005 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  6. Gonzalo, J.: Olmo, Rubiera-Garcia, D.: Brane-world and loop cosmology from a gravity-matter coupling perspective. Phys. Lett. B 740, 73–79 (2015)

    Article  MathSciNet  Google Scholar 

  7. Gambini, R., Pullin, J.: Emergence of stringlike physics from Lorentz invariance in loop quantum gravity. Int. J. Mod. Phys. D 23, 1442023 (2014)

    Article  ADS  Google Scholar 

  8. Fang, J., et al.: A generalized consistency condition for massless fields. Letters in Mathematical Physics 38, 213–216 (1996)

    Article  ADS  MATH  Google Scholar 

  9. Muller, D., et al.: Casimir energy in a small volume multiply connected static hyperbolic preinflationary universe. Phys. Rev. D 63, 123508 (2001)

    Article  ADS  Google Scholar 

  10. Muller, D., Fagundes, H.V.: Casimir energy density in closed hyperbolic universes. Int. J. Mod. Phys. A 17, 4385–4392 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  11. Aurich, R., Steiner, F.: Dark energy in a hyperbolic universe. Mon. Not. Roy. Astron. Soc. 334, 735–742 (2002)

    Article  ADS  Google Scholar 

  12. Wheeler, J.A.: Superspace. In: Gilbert, R.D., Newton, R. (eds.) Analytic Methods in Mathematical Physics, pp. 335–378. Gordon and Breach, New York (1970)

    Google Scholar 

  13. De Witt, B.: Quantum Theory of Gravity. I. The Canonical Theory. Phys. Rev. 160, 1113–1148 (1967)

    Google Scholar 

  14. Miritzis, J.: Isotropic cosmologies in Weyl geometry. Class. Quant. Grav. 21, 3043–3056 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Romero, C., et al.: General Relativity and Weyl Geometry. Class. Quant. Grav. 29, 155015 (2012)

    Article  ADS  Google Scholar 

  16. Anderson, E.: The Problem of Time in Quantum Gravity (2010). arXiv:1009.2157 [gr-qc]

  17. Kuchař, K. V.: Time and interpretations of quantum gravity. Int. J. Mod. Phys. Proc. Suppl. D 20, 3–86 (2011)

  18. Isham, C.J.: Canonical quantum gravity and the problem of time. In: Ibort, L.A., Rodriguez, M.A. (eds.) Integrable Systems, Quantum Groups and Quantum Field Theories, pp. 157–288. Kluwer, Dordrecht (1993)

    Chapter  Google Scholar 

  19. Ashtekar, A., et al.: Quantum Nature of the Big Bang: Improved dynamics. Phys. Rev. D 74, 084003 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  20. Vakili, B.: Scalar field quantum cosmology: a Schrödinger picture. Phys. Lett. B 718, 34–42 (2012)

    Article  ADS  Google Scholar 

  21. Dariescu, M. A., Dariescu, C.: From a Five Dimensional Warped Friedmann-Robertson-Walker Universe to the Weyl Integrable Spacetime. Int. J. Theor. Phys. (2015). doi:10.1007/s10773-014-2469-y

  22. Canuto, V., et al.: Scale Covariant Theory of Gravitation and Astrophysical Applications. Phys. Rev. D 16, 1643–1663 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  23. Gaztanaga, E., et al.: Clustering of Luminous Red Galaxies IV: Baryon Acoustic Peak in the Line-of-Sight Direction and a Direct Measurement of H(z). Mon. Not. Roy. Astron. Soc. 399, 1663–1680 (2009)

    Article  ADS  Google Scholar 

  24. Zhai, Zhong-Xu, et al.: Reconstruction and constraining of the jerk parameter from OHD and SNe Ia observations. Phys. Lett. B 727, 8–20 (2013)

    Article  ADS  Google Scholar 

  25. Busca, N.G., et al.: Baryon Acoustic Oscillations in the Ly-\(\alpha \) forest of BOSS quasars. Astronomy and Astrophysics 552, A96 (2013)

    Article  ADS  Google Scholar 

  26. Almeida, T.S., et al.: From Brans-Dicke gravity to a geometrical scalar-tensor theory. Phys. Rev. D 89, 064047 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  27. Arscott, F. M.: Part A. Heun’s Equation. In: Ronveaux, A. (ed.) Heun’s Differential Equations, pp. 3–86. Oxford University Press, Oxford, UK (1995)

  28. Fiziev, P.P., Staicova, D.R.: Application of the confluent Heun functions for finding the quasinormal modes of nonrotating black holes. Phys. Rev. D 84, 127502 (2011)

    Article  ADS  Google Scholar 

  29. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products, 4th edn. Academic, New York (1965)

    Google Scholar 

  30. Liu, Xiao, et al.: Dynamical behaviors of FRW Universe containing a positive/negative potential scalar field in loop quantum cosmology. Gen. Rel. Grav. 45, 1021–1031 (2013)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgments

The authors are most grateful to the anonymous referees for insightful remarks and suggestions which have been very helpful in improving the original form of our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina-Aura Dariescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dariescu, C., Dariescu, MA. Quantum Analysis of \(k=-1\) Robertson–Walker Universe. Found Phys 45, 1495–1513 (2015). https://doi.org/10.1007/s10701-015-9922-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-015-9922-5

Keywords

Navigation