Skip to main content
Log in

Splitting the Source Term for the Einstein Equation to Classical and Quantum Parts

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We consider the special and general relativistic extensions of the action principle behind the Schrödinger equation distinguishing classical and quantum contributions. Postulating a particular quantum correction to the source term in the classical Einstein equation we identify the conformal content of the above action and obtain classical gravitation for massive particles, but with a cosmological term representing off-mass-shell contribution to the energy–momentum tensor. In this scenario the—on the Planck scale surprisingly small—cosmological constant stems from quantum bound states (gravonium) having a Bohr radius a as being \(\Lambda =3/a^2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. It is so in order to transform a traceless tensor to another traceless one by a conformal transformation.

References

  1. de Sitter, W.: On Einstein’s theory of gravitation and its astronomical consequences. Mon. Not. R. Astron. Soc. 76, 699–728 (1916)

    Article  ADS  Google Scholar 

  2. de Sitter, W.: Erratum: On Einstein’s theory of gravitation and its astronomical consequences. Second paper. Mon. Not. R. Astron. Soc. 77, 155–184 (1916)

    Article  ADS  Google Scholar 

  3. de Sitter, W.: Einstein’s theory of gravitation and its astronomical consequences. Third paper. Mon. Not. R. Astron. Soc. 78, 3–28 (1917)

    Article  ADS  Google Scholar 

  4. Friedmann, A.: Über die Krümmung des Raumes. Z. Phys. 10, 377–386 (1922)

    Article  ADS  MATH  Google Scholar 

  5. Friedmann, A.: Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes. Z. Phys. 21(1), 326–332 (1924)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Lemaître, G.E.: Un univers homogéne de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extragalactiques. Ann. Sci. Soc. Bruss. 47A, 49–59 (1927)

    Google Scholar 

  7. Einstein, A.: Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, Berlin, pp. 142–152 (1917)

  8. Einstein, A.: Zum kosmologischen Problem der allgemeinen Relativitätstheorie. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), pp. 235–237 (1931)

  9. Padmanabhan, T.: Cosmological constant - the weight of the vacuum. Phys. Rep. 380, 235–320 (2003). arXiv:hep-th/0212290

  10. Burgess, C.P.: The cosmological constant problem: Why it’ s hard to get dark energy from micro-physics. (2013) arXiv:1309.4133

  11. Hubble, E.: A relation between distance and radial velocity among extra-galactic nebulae. Proc. Natl. Acad. Sci U S A. 15(3), 168–173 (1929)

    Article  ADS  MATH  Google Scholar 

  12. Press, W.H., Carroll, S.M., Turner, E.L.: The cosmological constant. Annu. Rev. Astron. Astrophys. 30, 499–542 (1992)

    Article  ADS  Google Scholar 

  13. Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61(1), 1–23 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Carroll, S.M.: The cosmological constant. Living Rev. Relativ. 3, 1 (2001)

    ADS  Google Scholar 

  15. Ade, P.A.R. et al: Planck 2013 results. XVI, Cosmological parameters (2013)

  16. Padmanabhan, T.: Dark energy: Mystery of the millennium. In J.-M. Alimi and Fűzfa A., (eds.), Albert Einstein Century International Conference, AIP Conference Proceedings, pp. 179–196. American Institute of Physics, 2006. arXiv:astro-ph/0603114

  17. Schrödinger, E.: Quantisierung als Eigenwertproblem (Erste Mitteilung). Ann. Phys. 79, 361–376 (1926)

    Article  MATH  Google Scholar 

  18. Schrödinger, E.: Quantisierung als Eigenwertproblem (Zweite Mitteilung). Ann. Phys. 79, 489–527 (1926)

    Article  MATH  Google Scholar 

  19. Schrödinger, E.: Über das Verhältnis der Heisenberg-Born-Jordanschen Quantenmechanik zu der meinem. Ann. Phys. 79, 734–756 (1926)

    Article  MATH  Google Scholar 

  20. Schrödinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28(6), 1049–1070 (1926)

    Article  ADS  MATH  Google Scholar 

  21. Bohm, D.: A suggested interpretation of the quantum theory in terms of ”hidden” variables I. Phys. Rev. 85(2), 166–179 (1952)

    Article  ADS  MATH  Google Scholar 

  22. Bohm, D.: A suggested interpretation of the quantum theory in terms of ”hidden” variables II. Phys. Rev. 85(2), 180–193 (1952)

    Article  ADS  Google Scholar 

  23. Bohm, D.: Proof that probability density approaches \(|\phi |^2\) of the quantum theory. Phys. Rev. 89(2), 458–466 (1953)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Bohm, D., Vigier, J.P.: Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations. Phys. Rev. 96(1), 208–216 (1954)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Takabayasi, T.: On the formulation of quantum mechanics associated with classical pictures. Prog. Theor. Phys. 8(2), 143–182 (1952)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Takabayasi, T.: Remarks on the formulation of quantum mechanics with classical pictures and on relations between linear scalar fields and hydrodynamical fields. Prog. Theor. Phys. 9(3), 187–222 (1953)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Einstein, A.: Die Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preussische Akademie der Wissenschaften zu Berlin, pp. 844–847 (1915)

  28. Einstein, A.: Die Grundlagen der Algemeine Relativitätstheorie. Ann. Phys. 4(49), 769–822 (1916)

    Article  Google Scholar 

  29. Hilbert, D.: Die Grundlagen der Physik, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse pp. 395–408 (1915)

  30. Madelung, E.: Quantentheorie in hydrodynamischer Form. Z. Phys. 40, 322–326 (1926). in German

    Article  ADS  MATH  Google Scholar 

  31. Jánossy, L.: The hydrodynamical model of wave mechanics, (The many body problem). Acta Phys. Hung. 27, 35–46 (1969)

    Article  Google Scholar 

  32. Boeyens, J.C.A.: The geometry of quantum events. Specul. Sci. Technol. 15, 192–210 (1992)

    Google Scholar 

  33. Wallstrom, T.C.: Inequivalence between the Schrödinger equation and the Madelung hydrodynamic equations. Phys. Rev. A 49(3), 1613–1617 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  34. Jánossy, L.: Zum hydrodynamischen Modell der Quantenmechanik. Z. Phys. 169(1), 79–89 (1962)

    Article  ADS  Google Scholar 

  35. Jánossy, L., Ziegler, M.: The hydrodynamical model of wave mechanics I., (The motion of a single particle in a potential field). Acta Phy. Hung. 16(1), 37–47 (1963)

    Article  Google Scholar 

  36. Jánossy, L., Ziegler-Náray, M.: The hydrodynamical model of wave mechanics II., (The motion of a single particle in an external electromagnetic field). Acta Phys. Hung. 16(4), 345–353 (1964)

    Article  Google Scholar 

  37. Jánossy, L., Ziegler-Náray, M.: The hydrodynamical model of wave mechanics III., (Electron spin). Acta Phys. Hung. 20, 233–249 (1966)

    Article  Google Scholar 

  38. Bialynicki-Birula, I., Mycielski, J.: Wave equations with logarithmic nonlinearities. Bull. Acad. Polon. Sci. Cl 3(23), 461 (1975)

    MathSciNet  Google Scholar 

  39. Bialynicki-Birula, I., Mycielski, J.: Nonlinear wave mechanics. Ann. Phys. 100, 62–93 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  40. Weinberg, S.: Testing quantum mechanics. Ann. Phys. 194, 336–386 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  41. Bialynicki-Birula, I.: Hydrodynamic form of the Weyl equation. Acta Phys. Pol. 26(7), 1201–1208 (1995)

    MathSciNet  MATH  Google Scholar 

  42. Bialynicki-Birula, I.: Hydrodynamics of relativistic probability flows, Nonlinear Dynamics, Chaotic and Complex Systems pp. 64–71 (1996)

  43. Bialynicki-Birula, I.: The photon wave function. In Coherence and Quantum Optics VII, pp. 313–322 (1996)

  44. Kuz’menkov, L.S., Maksimov, S.G.: Quantum hydrodynamics of particle systems with Coulomb interaction and quantum Bohm potential. Theor. Math. Phys. 118, 227–240 (1999)

    Article  MATH  Google Scholar 

  45. Andreev, P.A., Kuz’menkov, L.S.: On equations for the evolution of collective phenomena in fermion systems. Russ. Phys. J. 50(12), 1251–1258 (2007)

    Article  MATH  Google Scholar 

  46. Bialynicki-Birula, I., Bialynicka-Birula, Z.: Magnetic monopoles in the hydrodynamic formulation of quantum mechanics. Phys. Rev. D 3(10), 2410–2412 (1971)

    Article  ADS  Google Scholar 

  47. Bialynicki-Birula, I., Bialynicka-Birula, Z., Śliwa, C.: Motion of vortex lines in quantum mechanics. Phys. Rev. A 61(3), 032110 (2000)

    Article  ADS  Google Scholar 

  48. Bialynicki-Birula, I., Bialynicka-Birula, Z.: Vortex lines of the electromagnetic field. Phys. Rev. A 67(6), 062114 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  49. Ovchinnikov, S.Y., Macek, J.H., Schultz, D.R.: Hydrodynamical interpretation of angular momentum and energy transfer in atomic processes. Phys. Rev. A 90(6), 062713 (2014)

    Article  ADS  Google Scholar 

  50. Schmidt, LPhH, Goihl, C., Metz, D., Schmidt-Böcking, H., Dörner, R., Ovchinnikov, SYu., Macek, J.H., Schultz, D.R.: Vortices associated with the wave function of a single electron emitted in slow ion-atom collisions. Phys. Rev. Lett. 112(8), 083201 (2014)

    Article  ADS  Google Scholar 

  51. Takabayasi, T.: Relativistic hydrodynamics of the Dirac matter Part I. General theory. Suppl. Prog. Theor. Phys. 4, 1–80 (1957)

    Article  ADS  Google Scholar 

  52. Bistrovic, B., Jackiw, R., Li, H., Nair, V.P., and Pi, S.-Y.: Non-Abelian fluid dynamics in Lagrangian formulation. Phys. Rev. D, (67):025013(11), (2003) (hep-th/0210143)

  53. Jackiw, R., Nair, V.P., Pi, S.-Y., Polychronakos, A.P.: Perfect fluid theory and its extensions. J. Phys. A 37, R327–R432 (2004). arXiv:hep-ph/0407101

  54. Benseny, A., Albareda, G., Sanz, S., Mompart, J., Oriols, X.: Applied Bohmian mechanics. Eur. Phys. J. D 68(10), 1–42 (2014)

    Article  Google Scholar 

  55. Holland, P.R.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  56. Wyatt, R.E.: Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics). Contributions by Trahan, C. J., Interdisciplinary Applied Mathematics. vol. 28. Springer, Berlin (2005)

  57. Ván, P., Fülöp, T.: Weakly nonlocal fluid mechanics - the Schrödinger equation. Proc. R. Soc. A. 462(2066), 541–557 (2006)

    Article  ADS  MATH  Google Scholar 

  58. Heim, D.M., Schleich, W.P., Alsing, P.M., Dahl, J.P., Varró, S.: Tunneling of an energy eigenstate through a parabolic barrier viewed from wigner phase space. Phys. Lett. A 377(31), 1822–1825 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. Ván, P.: Weakly Nonlocal Non-Equilibrium Thermodynamics—Variational Principles and Second Law. In Quak, E., Soomere, T. (eds.), Applied Wave Mathematics (Selected Topics in Solids, Fluids, and Mathematical Methods), chapter III, pp. 153–186. Springer, Berlin (2009). arXiv:0902.3261

  60. Fülöp, T., Katz, S.D.: A frame and gauge free formulation of quantum mechanics (1998). quant-ph/9806067

  61. Schrödinger, E.: Über eine bemerkenswerte Eigenschaft der Quantenbahnen eines einzelnen Elektrons. Z. Phys. 12(1), 13–23 (1923)

    Article  ADS  Google Scholar 

  62. Itzykson, C., Zuber, J.B.: Quantum Field Theory. McGraw-Hill, New York (1980)

    Google Scholar 

  63. Delphenic, D.H.: A geometric origin for the Madelung potential. arXiv:gr-qc/0211065

  64. Delphenic, D.H.: A strain tensor that couples to the Madelung stress tensor. arXiv:1303.3582

  65. Carroll, R.: Remarks on geometry and the quantum potential. arXiv:math-ph/0701007

  66. Callan, C.G., Coleman, S., Jackiw, R.: A new improved energy-momentum tensor. Ann. Phys. 59, 42–73 (1970)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  67. Forger, M., Römer, H.: Currents and the energy-momentum tensor in classical field theory. Ann. Phys. 309(2), 306–389 (2004)

    Article  ADS  MATH  Google Scholar 

  68. Pons, J.M.: Noether symmetries, energy-momentum tensors, and conformal invariance in classical field theory. J. Math. Phys. 52, 012904 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  69. Brans, C.H., Dicke, R.H.: Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124(3), 925–935 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  70. Fujii, Y.: Dilaton and possible non-Newtonian gravity. Nat. Phys. Sci. 234(9), 5–7 (1971)

    Article  ADS  Google Scholar 

  71. Fujii, Y.: Scale invariance and gravity of hadrons. Ann. Phys. 69, 494–521 (1972)

    Article  ADS  Google Scholar 

  72. Fujji, Y., Maeda, K.-I.: The Scalar-Tensor Theory of Gravitation. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  73. Gasperini, M., Veneziano, G.: The pre-big bang scenario in string cosmology. Phys. Rep. 373(1), 1–212 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  74. Brans, C.H.: The roots of scalar-tensor theory: an approximate history (2005). arXiv:gr-qc/0506063

  75. Wald, R.M.: General Relativity. The University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

  76. Galindo, A., Pascual, P.: Quantum Mechanics I. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  77. Dong, S.-H.: Wave Equations in Higher Dimensions. Springer, Dordrecht (2011)

    Book  MATH  Google Scholar 

  78. Gotay, M.J., Marsden, J.E.: Stress-energy-momentum tensors and the Belinfante–Rosenfeld formula. Contemp. Math. 132, 367–392 (1992)

    Article  MathSciNet  Google Scholar 

  79. Dicke, R.H.: Mach’s principle and invariance under transformation of units. Phys. Rev. 125(6), 2163 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  80. Flanagan, E.E.: The conformal frame freedom in theories of gravitation. Class. Quantum Gravity 21(15), 3817 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  81. Faraoni, V., Nadeau, S.: (Pseudo) issue of the conformal frame revisited. Phys. Rev. D 75(2), 023501 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  82. Carroll, R.: On the Emergence Theme of Physics. World Scientific, Singapore (2010)

    Book  MATH  Google Scholar 

  83. Carroll, R.: Remarks on gravity and quantum geometry. arXiv:1007.4744 [math.ph]

  84. Koch, B.: Quantizing geometry or geometrizing the quantum? In QUANTUM THEORY: Reconsideration of Foundations-5. In: Proceedings of the AIP Conference Proceedings, vol. 1232, pp. 313–320. American Institute of Physics (2010). arXiv:1004.2879v2 [hep-th]

  85. Koch, B.: A geometrical dual to relativistic Bohmian mechanics—the multi particle case. arXiv:0901.4106

  86. Smolin, L.: Could quantum mechanics be an approximation to another theory? arXiv:quant-ph/0609109

  87. Schmelzer, I.: An answer to the Walstrom objection against Nelsonian statistics. arXiv:1101.5774 [quant-ph]

  88. Capozziello, S., De Laurentis, M.: Extended theories of gravity. Phys. Rep. 509(4), 167–321 (2011)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

We thank Manfried Faber for detailed discussions. Antal Jakovác, András Patkós and Reinhard Alkofer contributed with inspiring remarks at the ACHT (Austrian-Croatian-Hungarian Triangle) Meeting in Retzhof, June 2013. We also thank to the referees for the constructive remarks. This work was supported by the Hungarian National Research Fund OTKA (K81161, K104260).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ván.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biró, T.S., Ván, P. Splitting the Source Term for the Einstein Equation to Classical and Quantum Parts. Found Phys 45, 1465–1482 (2015). https://doi.org/10.1007/s10701-015-9920-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-015-9920-7

Keywords

Navigation