Foundations of Physics

, Volume 45, Issue 10, pp 1153–1165 | Cite as

Investigating Puzzling Aspects of the Quantum Theory by Means of Its Hydrodynamic Formulation

  • A. S. SanzEmail author


Bohmian mechanics, a hydrodynamic formulation of the quantum theory, constitutes a useful tool to understand the role of the phase as the mechanism responsible for the dynamical evolution displayed by quantum systems. This role is analyzed and discussed here in the context of quantum interference, considering to this end two well-known scenarios, namely Young’s two-slit experiment and Wheeler’s delayed choice experiment. A numerical implementation of the first scenario is used to show how interference in a coherent superposition of two counter-propagating wave packets can be seen and explained in terms of an effective model consisting of a single wave packet scattered off an attractive hard wall. The outcomes from this model are then applied to the analysis of Wheeler’s delayed choice experiment, also recreated by means of a reliable realistic simulation. Both examples illustrate quite well how the Bohmian formulation helps to explain in a natural way (and therefore to demystify) aspects of the quantum theory typically regarded as paradoxical. In other words, they show that a proper understanding of quantum phase dynamics immediately removes any trace of unnecessary artificial wave-particle arguments.


Bohmian mechanics Quantum phase Velocity field  Interference Young two-slit experiment Wheeler delayed-choice experiment 



The author acknowledges support from the Ministerio de Economía y Competitividad (Spain) under Project No. FIS2011-29596-C02-01 as well as a “Ramón y Cajal” Research Fellowship with Ref. RYC-2010-05768.


  1. 1.
    Dirac, P.A.M.: The Principles of Quantum Mechanics, 4th edn. Cambridge University Press, Cambridge (1958)zbMATHGoogle Scholar
  2. 2.
    von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932). English translation by Beyer, R.T.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)Google Scholar
  3. 3.
    Matteucci, G., Pezzi, M., Pozzi, G., Alberghi, G.L., Giorgi, F., Gabrielli, A., Cesari, N.S., Villa, M., Zoccoli, A., Frabboni, S., Gazzadi, G.C.: Build-up of interference patterns with single electrons. Eur. J. Phys. 34, 511–517 (2013)CrossRefGoogle Scholar
  4. 4.
    Parker, S.: A single-photon double-slit interference experiment. Am. J. Phys. 39, 420–424 (1971)CrossRefADSGoogle Scholar
  5. 5.
    Rueckner, W., Titcomb, P.: A lecture demonstration of single photon interference. Am. J. Phys. 64, 184–188 (1996)CrossRefADSGoogle Scholar
  6. 6.
    Dimitrova, T.L., Weis, A.: The wave-particle duality of light: a demonstration experiment. Am. J. Phys. 76, 137–142 (2008)CrossRefADSGoogle Scholar
  7. 7.
    Merli, P.G., Missiroli, G.F., Pozzi, G.: On the statistical aspect of electron interference phenomena. Am. J. Phys. 44, 306–307 (1976)CrossRefADSGoogle Scholar
  8. 8.
    Tonomura, A., Endo, J., Matsuda, T., Kawasaki, T., Ezawa, H.: Demonstration of single-electron buildup of an interference pattern. Am. J. Phys. 57, 117–120 (1989). An original movies on the experiment can be found in the link.
  9. 9.
    Shimizu, F., Shimizu, K., Takuma, H.: Double-slit interference with ultracold metastable neon atoms. Phys. Rev. A 46, R17–R20 (1992)CrossRefADSGoogle Scholar
  10. 10.
    Arndt, M., Nairz, O., Vos-Andreae, J., Keller, C., van der Zouw, G., Zeilinger, A.: Wave-particle duality of C\(_{60}\) molecules. Nature 401, 680–682 (1999)CrossRefADSGoogle Scholar
  11. 11.
    Juffman, T., Milic, A., Müllneritsch, M., Asenbaum, P., Tsukernik, A., Tüxen, J., Mayor, M., Cheshnovsky, O., Arndt, M.: Real-time single-molecule imaging of quantum interference. Nature Nanotech. 7, 297–300 (2012). A movie on the experiment can be found at the link.
  12. 12.
    Sanz, A.S., Miret-Artés, S.: A Trajectory Description of Quantum Processes I. Fundamentals. Springer, Berlin (2012)zbMATHCrossRefGoogle Scholar
  13. 13.
    Sanz, A.S., Miret-Artés, S.: A Trajectory Description of Quantum Processes II. Applications. Springer, Berlin (2014)zbMATHCrossRefGoogle Scholar
  14. 14.
    Sanz, A.S.: Particles, waves and trajectories: 210 years after Young’s experiment. J. Phys. 504(1–14), 012028 (2014)Google Scholar
  15. 15.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables I. Phys. Rev. 85, 166–179 (1952)zbMATHCrossRefADSGoogle Scholar
  16. 16.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables II. Phys. Rev. 85, 180–193 (1952)CrossRefADSGoogle Scholar
  17. 17.
    Bohm, D., Vigier, J.P.: Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations. Phys. Rev. 96, 208–216 (1954)zbMATHMathSciNetCrossRefADSGoogle Scholar
  18. 18.
    Kocsis, S., Braverman, B., Ravets, S., Stevens, M.J., Mirin, R.P., Shalm, L.K., Steinberg, A.M.: Observing the average trajectories of single photons in a two-slit interferometer. Science 332, 1170–1173 (2011)CrossRefADSGoogle Scholar
  19. 19.
    Wheeler, J.A.: The past and the delayed-choice double-slit experiment. In: Marlow, A.R. (ed.) Mathematical Foundations of Quantum Theory, pp. 9–48. Academic Press, New York (1978)CrossRefGoogle Scholar
  20. 20.
    Sanz, A.S., Miret-Artés, S.: Quantum phase analysis with quantum trajectories: a step towards the creation of a Bohmian thinking. Am. J. Phys. 80, 525–533 (2012)CrossRefADSGoogle Scholar
  21. 21.
    Sanz, A.S., Borondo, F., Miret-Artés, S.: Causal trajectories description of atom diffraction by surfaces. Phys. Rev. B 61, 7743–7751 (2000)CrossRefADSGoogle Scholar
  22. 22.
    Sanz, A.S., Borondo, F., Miret-Artés, S.: Particle diffraction studied using quantum trajectories. J. Phys. 14, 6109–6145 (2002)Google Scholar
  23. 23.
    Sanz, A.S., Miret-Artés, S.: A trajectory-based understanding of quantum interference. J. Phys. A 41(1–23), 435303 (2008)MathSciNetCrossRefADSGoogle Scholar
  24. 24.
    Couder, Y., Protière, S., Fort, E., Boudaoud, A.: Dynamical phenomena: walking and orbiting droplets. Nature 437, 208 (2005)CrossRefADSGoogle Scholar
  25. 25.
    Couder, Y., Fort, E.: Single-particle diffraction and interference at a macroscopic scale. Phys. Rev. Lett. 97(1–4), 154101 (2006)CrossRefADSGoogle Scholar
  26. 26.
    Protière, S., Boudaoud, A., Couder, Y.: Particle-wave association on a fluid interface. J. Fluid. Mech. 554, 85–108 (2006)zbMATHMathSciNetCrossRefADSGoogle Scholar
  27. 27.
    Fort, E., Eddi, A., Boudaoud, A., Moukhtar, J., Couder, Y.: Path-memory induced quantization of classical orbits. Proc. Natl. Acad. Sci. USA 108, 17515–17520 (2010)CrossRefGoogle Scholar
  28. 28.
    Bush, J.W.M.: Quantum mechanics writ large. Proc. Natl. Acad. Sci. USA 107, 17455–17456 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Harris, D.M., Moukhtar, J., Fort, E., Couder, Y., Bush, J.W.M.: Wavelike statistics from pilot-wave dynamics in a circular corral. Phys. Rev. E 88(1–5), 011011(R) (2013)ADSGoogle Scholar
  30. 30.
    Bush, J.W.M.: Pilot-wave hydrodynamics. Annu. Rev. Fluid Mech. 47, 269–292 (2015)CrossRefADSGoogle Scholar
  31. 31.
    Bohr, N.: Discussion with Einstein on epistemological problems in atomic physics, in Albert Einstein: Philosopher-Scientist, ed. P. A. Schilpp, Library of Living Philosophers, vol. 7 (MJF Books, New York, 1949), pp. 199–241. Reprinted in Quantum Theory and Measurement, eds. J. A. Wheeler and W. H. Zurek (Princeton University Press, Princeton, 1983), pp. 9–48 (see also commentaries on the issue in pp. 3–48)Google Scholar
  32. 32.
    Hellmuth, T., Walther, H., Zajonc, A., Schleich, W.: Delayed-choice experiments in quantum interference. Phys. Rev. A 35, 2532–2541 (1987)CrossRefADSGoogle Scholar
  33. 33.
    Jacques, V., Wu, E., Grosshans, F., Treussart, F., Grangier, P., Aspect, A., Roch, J.-F.: Experimental realization of Wheeler’s delayed-choice gedanken experiment. Science 315, 966–968 (2007)CrossRefADSGoogle Scholar
  34. 34.
    Tang, J.-S., Li, Y.-L., Xu, X.-Y., Xiang, G.-Y., Li, C.-F., Guo, G.-C.: Realization of quantum Wheeler’s delayed-choice experiment. Nature Photonics 6, 600–604 (2012)CrossRefADSGoogle Scholar
  35. 35.
    Bohm, D., Dewdney, C., Hiley, B.J.: A quantum potential approach to the Wheeler delayed-choice experiment. Nature 315, 294–297 (1985)CrossRefADSGoogle Scholar
  36. 36.
    Hiley, B.J., Callaghan, R.E.: Delayed-choice experiment and the Bohm approach. Phys. Scr. 74, 336–348 (2006)MathSciNetCrossRefADSGoogle Scholar
  37. 37.
    A more detailed work on Wheeler’s experiment, including a removable beam splitter, is currently being preparedGoogle Scholar
  38. 38.
    Sanz, A.S., Davidović, M., Božić, M.: Full quantum mechanical analysis of atomic three-grating Mach-Zehnder interferometry. Ann. Phys. 353, 205–221 (2015)CrossRefADSGoogle Scholar
  39. 39.
    Chapman, M.S., Hammond, T.D., Lenef, A., Schmiedmayer, J., Rubenstein, R.A., Smith, E., Pritchard, D.E.: Photon scattering from atoms in an atom interferometer: coherence lost and regained. Phys. Rev. Lett. 75, 3783–3787 (1995)CrossRefADSGoogle Scholar
  40. 40.
    Cronin, A.D., Schmiedmayer, J., Pritchard, D.E.: Optics and interferometry with atoms and molecules. Rev. Mod. Phys. 81, 1051–1129 (2009)CrossRefADSGoogle Scholar
  41. 41.
    Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. 3, ch. 2. Addison, New York (1960s) For the online version, see.

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Instituto de Física Fundamental (IFF-CSIC)MadridSpain

Personalised recommendations