Skip to main content
Log in

Investigating Puzzling Aspects of the Quantum Theory by Means of Its Hydrodynamic Formulation

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Bohmian mechanics, a hydrodynamic formulation of the quantum theory, constitutes a useful tool to understand the role of the phase as the mechanism responsible for the dynamical evolution displayed by quantum systems. This role is analyzed and discussed here in the context of quantum interference, considering to this end two well-known scenarios, namely Young’s two-slit experiment and Wheeler’s delayed choice experiment. A numerical implementation of the first scenario is used to show how interference in a coherent superposition of two counter-propagating wave packets can be seen and explained in terms of an effective model consisting of a single wave packet scattered off an attractive hard wall. The outcomes from this model are then applied to the analysis of Wheeler’s delayed choice experiment, also recreated by means of a reliable realistic simulation. Both examples illustrate quite well how the Bohmian formulation helps to explain in a natural way (and therefore to demystify) aspects of the quantum theory typically regarded as paradoxical. In other words, they show that a proper understanding of quantum phase dynamics immediately removes any trace of unnecessary artificial wave-particle arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dirac, P.A.M.: The Principles of Quantum Mechanics, 4th edn. Cambridge University Press, Cambridge (1958)

    MATH  Google Scholar 

  2. von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932). English translation by Beyer, R.T.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)

  3. Matteucci, G., Pezzi, M., Pozzi, G., Alberghi, G.L., Giorgi, F., Gabrielli, A., Cesari, N.S., Villa, M., Zoccoli, A., Frabboni, S., Gazzadi, G.C.: Build-up of interference patterns with single electrons. Eur. J. Phys. 34, 511–517 (2013)

    Article  Google Scholar 

  4. Parker, S.: A single-photon double-slit interference experiment. Am. J. Phys. 39, 420–424 (1971)

    Article  ADS  Google Scholar 

  5. Rueckner, W., Titcomb, P.: A lecture demonstration of single photon interference. Am. J. Phys. 64, 184–188 (1996)

    Article  ADS  Google Scholar 

  6. Dimitrova, T.L., Weis, A.: The wave-particle duality of light: a demonstration experiment. Am. J. Phys. 76, 137–142 (2008)

    Article  ADS  Google Scholar 

  7. Merli, P.G., Missiroli, G.F., Pozzi, G.: On the statistical aspect of electron interference phenomena. Am. J. Phys. 44, 306–307 (1976)

    Article  ADS  Google Scholar 

  8. Tonomura, A., Endo, J., Matsuda, T., Kawasaki, T., Ezawa, H.: Demonstration of single-electron buildup of an interference pattern. Am. J. Phys. 57, 117–120 (1989). An original movies on the experiment can be found in the link. https://www.youtube.com/watch?v=PanqoHa_B6c

  9. Shimizu, F., Shimizu, K., Takuma, H.: Double-slit interference with ultracold metastable neon atoms. Phys. Rev. A 46, R17–R20 (1992)

    Article  ADS  Google Scholar 

  10. Arndt, M., Nairz, O., Vos-Andreae, J., Keller, C., van der Zouw, G., Zeilinger, A.: Wave-particle duality of C\(_{60}\) molecules. Nature 401, 680–682 (1999)

    Article  ADS  Google Scholar 

  11. Juffman, T., Milic, A., Müllneritsch, M., Asenbaum, P., Tsukernik, A., Tüxen, J., Mayor, M., Cheshnovsky, O., Arndt, M.: Real-time single-molecule imaging of quantum interference. Nature Nanotech. 7, 297–300 (2012). A movie on the experiment can be found at the link. https://www.youtube.com/watch?v=vCiOMQIRU7I

  12. Sanz, A.S., Miret-Artés, S.: A Trajectory Description of Quantum Processes I. Fundamentals. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  13. Sanz, A.S., Miret-Artés, S.: A Trajectory Description of Quantum Processes II. Applications. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  14. Sanz, A.S.: Particles, waves and trajectories: 210 years after Young’s experiment. J. Phys. 504(1–14), 012028 (2014)

    Google Scholar 

  15. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables I. Phys. Rev. 85, 166–179 (1952)

    Article  MATH  ADS  Google Scholar 

  16. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables II. Phys. Rev. 85, 180–193 (1952)

    Article  ADS  Google Scholar 

  17. Bohm, D., Vigier, J.P.: Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations. Phys. Rev. 96, 208–216 (1954)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Kocsis, S., Braverman, B., Ravets, S., Stevens, M.J., Mirin, R.P., Shalm, L.K., Steinberg, A.M.: Observing the average trajectories of single photons in a two-slit interferometer. Science 332, 1170–1173 (2011)

    Article  ADS  Google Scholar 

  19. Wheeler, J.A.: The past and the delayed-choice double-slit experiment. In: Marlow, A.R. (ed.) Mathematical Foundations of Quantum Theory, pp. 9–48. Academic Press, New York (1978)

    Chapter  Google Scholar 

  20. Sanz, A.S., Miret-Artés, S.: Quantum phase analysis with quantum trajectories: a step towards the creation of a Bohmian thinking. Am. J. Phys. 80, 525–533 (2012)

    Article  ADS  Google Scholar 

  21. Sanz, A.S., Borondo, F., Miret-Artés, S.: Causal trajectories description of atom diffraction by surfaces. Phys. Rev. B 61, 7743–7751 (2000)

    Article  ADS  Google Scholar 

  22. Sanz, A.S., Borondo, F., Miret-Artés, S.: Particle diffraction studied using quantum trajectories. J. Phys. 14, 6109–6145 (2002)

    Google Scholar 

  23. Sanz, A.S., Miret-Artés, S.: A trajectory-based understanding of quantum interference. J. Phys. A 41(1–23), 435303 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  24. Couder, Y., Protière, S., Fort, E., Boudaoud, A.: Dynamical phenomena: walking and orbiting droplets. Nature 437, 208 (2005)

    Article  ADS  Google Scholar 

  25. Couder, Y., Fort, E.: Single-particle diffraction and interference at a macroscopic scale. Phys. Rev. Lett. 97(1–4), 154101 (2006)

    Article  ADS  Google Scholar 

  26. Protière, S., Boudaoud, A., Couder, Y.: Particle-wave association on a fluid interface. J. Fluid. Mech. 554, 85–108 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Fort, E., Eddi, A., Boudaoud, A., Moukhtar, J., Couder, Y.: Path-memory induced quantization of classical orbits. Proc. Natl. Acad. Sci. USA 108, 17515–17520 (2010)

    Article  Google Scholar 

  28. Bush, J.W.M.: Quantum mechanics writ large. Proc. Natl. Acad. Sci. USA 107, 17455–17456 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Harris, D.M., Moukhtar, J., Fort, E., Couder, Y., Bush, J.W.M.: Wavelike statistics from pilot-wave dynamics in a circular corral. Phys. Rev. E 88(1–5), 011011(R) (2013)

    ADS  Google Scholar 

  30. Bush, J.W.M.: Pilot-wave hydrodynamics. Annu. Rev. Fluid Mech. 47, 269–292 (2015)

    Article  ADS  Google Scholar 

  31. Bohr, N.: Discussion with Einstein on epistemological problems in atomic physics, in Albert Einstein: Philosopher-Scientist, ed. P. A. Schilpp, Library of Living Philosophers, vol. 7 (MJF Books, New York, 1949), pp. 199–241. Reprinted in Quantum Theory and Measurement, eds. J. A. Wheeler and W. H. Zurek (Princeton University Press, Princeton, 1983), pp. 9–48 (see also commentaries on the issue in pp. 3–48)

  32. Hellmuth, T., Walther, H., Zajonc, A., Schleich, W.: Delayed-choice experiments in quantum interference. Phys. Rev. A 35, 2532–2541 (1987)

    Article  ADS  Google Scholar 

  33. Jacques, V., Wu, E., Grosshans, F., Treussart, F., Grangier, P., Aspect, A., Roch, J.-F.: Experimental realization of Wheeler’s delayed-choice gedanken experiment. Science 315, 966–968 (2007)

    Article  ADS  Google Scholar 

  34. Tang, J.-S., Li, Y.-L., Xu, X.-Y., Xiang, G.-Y., Li, C.-F., Guo, G.-C.: Realization of quantum Wheeler’s delayed-choice experiment. Nature Photonics 6, 600–604 (2012)

    Article  ADS  Google Scholar 

  35. Bohm, D., Dewdney, C., Hiley, B.J.: A quantum potential approach to the Wheeler delayed-choice experiment. Nature 315, 294–297 (1985)

    Article  ADS  Google Scholar 

  36. Hiley, B.J., Callaghan, R.E.: Delayed-choice experiment and the Bohm approach. Phys. Scr. 74, 336–348 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  37. A more detailed work on Wheeler’s experiment, including a removable beam splitter, is currently being prepared

  38. Sanz, A.S., Davidović, M., Božić, M.: Full quantum mechanical analysis of atomic three-grating Mach-Zehnder interferometry. Ann. Phys. 353, 205–221 (2015)

    Article  ADS  Google Scholar 

  39. Chapman, M.S., Hammond, T.D., Lenef, A., Schmiedmayer, J., Rubenstein, R.A., Smith, E., Pritchard, D.E.: Photon scattering from atoms in an atom interferometer: coherence lost and regained. Phys. Rev. Lett. 75, 3783–3787 (1995)

    Article  ADS  Google Scholar 

  40. Cronin, A.D., Schmiedmayer, J., Pritchard, D.E.: Optics and interferometry with atoms and molecules. Rev. Mod. Phys. 81, 1051–1129 (2009)

    Article  ADS  Google Scholar 

  41. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. 3, ch. 2. Addison, New York (1960s) For the online version, see. http://www.feynmanlectures.caltech.edu/III_02.html

Download references

Acknowledgments

The author acknowledges support from the Ministerio de Economía y Competitividad (Spain) under Project No. FIS2011-29596-C02-01 as well as a “Ramón y Cajal” Research Fellowship with Ref. RYC-2010-05768.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Sanz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanz, A.S. Investigating Puzzling Aspects of the Quantum Theory by Means of Its Hydrodynamic Formulation. Found Phys 45, 1153–1165 (2015). https://doi.org/10.1007/s10701-015-9917-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-015-9917-2

Keywords

Navigation