Foundations of Physics

, Volume 45, Issue 11, pp 1433–1453 | Cite as

Secure Communication in the Twin Paradox

  • Juan Carlos Garcia-Escartin
  • Pedro Chamorro-Posada


The amount of information that can be transmitted through a noisy channel is affected by relativistic effects. Under the presence of a fixed noise at the receiver, there appears an asymmetry between “slowly aging” and “fast aging” observers which can be used to have private information transmission. We discuss some models for users inside gravitational wells and in the twin paradox scenario.


Relativity Noisy channel theorem Information theory Doppler effect 



Part of this work was done during the stay of Juan Carlos García Escartín at the Centre for Quantum Computation at Cambridge University (UK), which was funded by mobility program José Castillejo Grant Ref. JC2009-00271. Juan Carlos would like to thank all the people there for their kind hospitality and many interesting conversations.


  1. 1.
    Shannon, C.E.: Communication in the presence of noise. Proc. IRE 37(1), 10–21 (1949)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Jarett, K., Cover, T.M.: Asymmetries in relativistic information flow. IEEE Trans. Inform. Theory 27(2), 152–159 (1981)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Slepian, D.: On bandwidth. Proc. IEEE 64(3), 292–300 (1976)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Einstein, A.: Zur Elektrodynamik bewegter Körper. Annalen der Physik 322(10), 891–921 (1905)CrossRefADSGoogle Scholar
  5. 5.
    van Bladel, J.: Relativity and Engineering. Springer Series in Electrophysics, vol. 15. Springer, Berlin (1984)Google Scholar
  6. 6.
    Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields, vol. 2 of Course of Theoretical Physics, 4th edn. Pergamon Press, New York (1975)Google Scholar
  7. 7.
    Taylor, E., Wheeler, J.: Exploring Black Holes: Introduction to General Relativity. Addison-Wesley, Boston (2001)Google Scholar
  8. 8.
    Okun, L.B., Selivanov, K.G., Telegdi, V.L.: On the interpretation of the redshift in a static gravitational field. Am. J. Phys. 68(2), 115–119 (2000)CrossRefADSGoogle Scholar
  9. 9.
    Harvey, A., Schucking, E., Surowitz, E.J.: Redshifts and Killing vectors. Am. J. Phys. 74(11), 1017–1024 (2006)CrossRefADSGoogle Scholar
  10. 10.
    Radosz, A., Augousti, A.T., Ostasiewicz, K.: Decoupling of kinematical time dilation and gravitational time dilation in particular geometries. Acta Phys. Pol. B 39(6), 1357 (2008)MathSciNetADSGoogle Scholar
  11. 11.
    Bennett, C.H., Brassard, G., Crepeau, C., Maurer, U.M.: Generalized privacy amplification. IEEE Trans. Inform. Theory 41(6), 1915–1923 (1995)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE international Conference on Computers, Systems and Signal Processing, Bangalore, India, p. 175 (1984)Google Scholar
  13. 13.
    Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Brádler, K., Hayden, P., Panangaden, P.: Private information via the Unruh effect. J. High Energy Phys. 2009(08), 074 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Juan Carlos Garcia-Escartin
    • 1
  • Pedro Chamorro-Posada
    • 1
  1. 1.Dpto. de Teoría de la Señal y Comunicaciones e Ingeniería TelemáticaUniversidad de ValladolidValladolidSpain

Personalised recommendations