Skip to main content
Log in

Proof of the Spin–Statistics Theorem

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The traditional standard quantum mechanics theory is unable to solve the spin–statistics problem, i.e. to justify the utterly important “Pauli Exclusion Principle”. A complete and straightforward solution of the spin–statistics problem is presented on the basis of the “conformal quantum geometrodynamics” theory. This theory provides a Weyl-gauge invariant formulation of the standard quantum mechanics and reproduces successfully all relevant quantum processes including the formulation of Dirac’s or Schrödinger’s equation, of Heisenberg’s uncertainty relations and of the nonlocal EPR correlations. When the conformal quantum geometrodynamics is applied to a system made of many identical particles with spin, an additional constant property of all elementary particles enters naturally into play: the “intrinsic helicity”. This property, not considered in the Standard Quantum Mechanics, determines the correct spin–statistics connection observed in Nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. This similarity induced Weyl to identify \(\phi _i\) with the e.m. four potential to obtain an unified theory for electromagnetism and gravitation [35]. This approach however was unsuccessful and nowadays we know that e.m. forces are unified with weak nuclear forces, instead.

  2. As shown elsewhere [11, 33], external e.m. fields can be easily introduced by considering the further invariance under the e.m. gauge change \(a_i\rightarrow a_i+\partial _i\chi \) and \(\sigma \rightarrow \sigma -\chi \) with the replacement \(D_i\sigma \rightarrow D_i\sigma -a_i\) in Eq. (3).

  3. As it is well known, Bohm considers the coupled equations for modulus and phase of the wavefunction \(\Psi \) obtained from the wave equation (Klein–Gordon, Schrödinger) of the SQM. Bohm’s coupled equations have the form of a continuity equation for the density \(\rho =|\Psi |^2\) and of a Hamilton–Jacobi equation with suitable “ quantum potential” depending on \(\rho \) added to. Now, a closer inspection into Eq. (3) shows that the second equation has the form of a continuity equation for the density \(\rho =|\Psi |^2=|A|^2e^{(n-2)\phi }\) [cfr. Eq. (5)] and the first equation has the form of the Hamilton–Jacobi equation with potential given by the Weyl scalar curvature. Now Eq. (2) with \(\phi _i=\partial _i\phi \) shows that the second term on the right has the same form of Bohm’s quantum potential. It is then not surprising that Bohm’s ansatz can be used to transform Eq. (3) into the linear wave Eq. (4) [30, 33]. However, as said in the text, Eq. (4) is not a wave equation of the SQM.

  4. In Bohm’s approach, the spin is described by the coupled equations of modulus and phase of each component of the spinor [6]. We then have four Bohm’s coupled equations for Pauli spinors and eight Bohm’s coupled equations for Dirac spinors. In this case, Bohmian quantum mechanics and CQG are mutually at variance.

  5. The same mathematical method is used, for example, in \((4+N)\)-Kaluza Klein approach to gravitational plus Yang–Mills theory [27].

  6. We may think of \(ma^2\) as the particle moment of inertia and of \(a\) as the gyration radius.

  7. It can be shown that the addition of external e.m. fields introduces no dependence on \(\gamma \) as well [11, 33].

  8. The square modulus of \(\Phi _s\) is given by

    $$\begin{aligned} |\Phi _s|^2= & {} \cos ^2\frac{\beta }{2}|\psi ^\uparrow (\varvec{r},t)|^2 + \sin ^2\frac{\beta }{2}|\psi ^\downarrow (\varvec{r},t)|^2 +\nonumber \\&+\cos \frac{\beta }{2}\sin \frac{\beta }{2}[\psi ^{\uparrow *}(\varvec{r},t)\psi ^\downarrow (\varvec{r},t)+\psi ^\uparrow (\varvec{r},t)\psi ^{\downarrow *}(\varvec{r},t)] \end{aligned}$$
    (20)
  9. The terminology is taken from the similar factorization of the Lorentz group into rotations and boosts.

References

  1. Atre, M.V., Mukunda, N.: Classical particles with internal structure: general formalism and application to first-order internal spaces. J. Math. Phys. 27, 2908–2919 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Balachandran, A.P., Daughton, A., Gu, Z.C., Sorkin, R.D., Marmo, G., Srivastava, A.M.: Spin-statistics theorems without relativity or field theory. Int. J. Mod. Phys. A 8(17), 2993–3044 (1993). doi:10.1142/S0217751X93001223. http://www.worldscientific.com/doi/abs/10.1142/S0217751X93001223

  3. Biedenharn, L.C., Dam, H.V., Marmo, G., Morandi, G., Mukunda, N., Samuel, J., Sudarshan, E.C.G.: Classical models for Regge trajectories. Int. J. Mod. Phys. A 2, 1567–1589 (1987)

    Article  ADS  Google Scholar 

  4. Bohm, D.: A suggested interpretation of the quantum theory in terms of “Hidden” variables I. Phys. Rev. 85(2), 166–179 (1952). doi:10.1103/PhysRev.85.166

  5. Bohm, D.: A suggested interpretation of the quantum theory in terms of “Hidden” variables II. Phys. Rev. 85(2), 180–193 (1952). doi:10.1103/PhysRev.85.180

  6. Bohm, D., Hiley, B.J.: The Undivided Universe: An Ontological Interpretation of Quantum Theory. Routledge, London (1995)

    MATH  Google Scholar 

  7. Chew, G.F., Frautschi, S.C.: Regge trajectories and the principle of maximum strength for strong interactions. Phys. Rev. Lett. 8, 41–44 (1962)

    Article  ADS  Google Scholar 

  8. Davydov, A.S.: Quantum Mechanics, 2, edition edn. Pergamon Pr, Oxford (1976)

    Google Scholar 

  9. De Broglie, L., Andrade e Silva, J.L.: La réinterprétation de la mécanique ondulatoire. Gauthier-Villars, Paris (1971)

    Google Scholar 

  10. De Martini, F., Santamato, E.: Derivation of Dirac’s equation from conformal differential geometry. In: D’Ariano, M., Fei, S.M., Haven, E., Hiesmayr, B., Jaeger, G., Khrennikov, A., Larsson, J.Å. (eds.) Foundations of Probability and Physics 6, vol. 1424, pp. 45–54. AIP Conference Proceedings 2012, (2011). doi:10.1063/1.3688951

  11. De Martini, F., Santamato, E.: Interpretation of quantum nonlocality by conformal quantum geometrodynamics. Int. J. Theor. Phys. 53(10), 3308–3322 (2014). doi:10.1007/s10773-013-1651-y. http://link.springer.com/article/10.1007/s10773-013-1651-y

  12. De Martini, F., Santamato, E.: Nonlocality, no-signalling, and Bell’s theorem investigated by Weyl conformal differential geometry. Phys. Scr. T163, 014015 (2014). doi:10.1088/0031-8949/2014/T163/014015

    Article  ADS  Google Scholar 

  13. Dirac, P.A.M.: Long range forces and broken symmetries. Proc. R. Soc. Lond. Ser. A 333, 403–418 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  14. Duck, I., Sudarshan, E.C.G.: Toward an understanding of the spin-statistics theorem. Am. J. Phys. 66(4), 284–303 (1998). doi:10.1119/1.18860

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Duck, I., Sudarshan, E.C.G., Wightman, A.S.: Pauli and the spin-statistics theorem. Am. J. Phys. 67(8), 742–746 (1999). doi:10.1119/1.19365

    Article  ADS  Google Scholar 

  16. Feynman, R.P., Leighton, R.B., Sands, M.L.: The Feynman Lectures on Physics, vol. III. Addison-Wesley, Redwood City (1989)

    Google Scholar 

  17. Goldstein, H.: Classical Mechanics. Addison-Wesley Pub. Co., Reading (1980)

    MATH  Google Scholar 

  18. Hehl, F., Lemk, J., Mielke, E.: Two lectures on fermions and gravity. In: Debrus, J., Hirshfeld, A. (eds.) Geometry and Theoretical Physics, Bad Honnef Lectures, 12–16 Feb, pp. 56–140. Springer, Berlin (1991)

    Chapter  Google Scholar 

  19. Hochberg, D., Plunien, G.: Theory of matter in Weyl spacetime. Phys. Rev. D 43, 3358–3367 (1991). doi:10.1103/PhysRevD.43.3358

  20. Jabs, A.: Addendum to: connecting spin and statistics in quantum mechanics. Found. Phys. 40(7), 793–794 (2010). doi:10.1007/s10701-009-9351-4

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Jabs, A.: Connecting spin and statistics in quantum mechanics. Found. Phys. 40(7), 776–792 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Khrennikov, A.: Towards a field model of prequantum reality. Found. Phys. 42(6), 725–741 (2011). doi:10.1007/s10701-011-9611-y. http://link.springer.com/article/10.1007/s10701-011-9611-y

  23. Khrennikov, A., Ohya, M., Watanabe, N.: Quantum probability from classical signal theory. Int. J. Quantum Inf. 09(supp01), 281–292 (2011). doi:10.1142/S0219749911007289. http://www.worldscientific.com/doi/abs/10.1142/S0219749911007289

  24. Lord, E.A.: Tensors, Relativity and Cosmology. McGraw-Hill, New York (1979)

    Google Scholar 

  25. Quigg, C.: Gauge Theories of the Strong. Weak and Electromagnetic Interactions. Benjamin, Menlo Park (1983)

    Google Scholar 

  26. Romer, R.H.: The spin-statistics theorem. Am. J. Phys. 70(8), 791–791 (2002). doi:10.1119/1.1482064

    Article  ADS  Google Scholar 

  27. Salam, A., Strathdee, J.: On Kaluza-Klein theory. Ann. Phys. 141(2), 316–352 (1982). doi:10.1016/0003-4916(82)90291-3

    Article  MathSciNet  ADS  Google Scholar 

  28. Santamato, E.: Geometric derivation of the Schrödinger equation from classical mechanics in curved Weyl spaces. Phys. Rev. D 29(2), 216–222 (1984). doi:10.1103/PhysRevD.29.216

  29. Santamato, E.: Statistical interpretation of the Kleinâ Gordon equation in terms of the spaceâ time Weyl curvature. J. Math. Phys. 25(8), 2477–2480 (1984). doi:10.1063/1.526467. http://scitation.aip.org/content/aip/journal/jmp/25/8/10.1063/1.526467

  30. Santamato, E.: Gauge-invariant statistical mechanics and average action principle for the Klein-Gordon particle in geometric quantum mechanics. Phys. Rev. D 32(10), 2615–2621 (1985). doi:10.1103/PhysRevD.32.2615

  31. Santamato, E.: Heisenberg uncertainty relations and average space curvature in geometric quantum mechanics. Phys. Lett. A 130(4–5), 199–202 (1988). doi:10.1016/0375-9601(88)90593-2. http://www.sciencedirect.com/science/article/pii/0375960188905932

  32. Santamato, E., De Martini, F.: Solving the nonlocality riddle by conformal quantum geometrodynamics. Int. J. Quantum Inf. 10(08), 1241013 (2012). doi:10.1142/S0219749912410134. http://www.worldscientific.com/doi/abs/10.1142/S0219749912410134

  33. Santamato, E., De Martini, F.: Derivation of the Dirac equation by conformal differential geometry. Found. Phys. 43, 631–641 (2013). doi:10.1007/s10701-013-9703-y

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. Taylor, J.R.: Classical Mechanics. University Science Books, Sausalito (2005)

    MATH  Google Scholar 

  35. Weyl, H.: Gravitation und elektrizität. Sitzungsber. Preuss. Akad. Wiss. Phys. Math. K1, 465–480 (1918). Reprinted. In: The Principles of Relativity (Dover, New York, 1923)

  36. Weyl, H.: Space, Time, Matter, 4th edn. Dover Publications Inc, New York (1952)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Santamato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santamato, E., De Martini, F. Proof of the Spin–Statistics Theorem. Found Phys 45, 858–873 (2015). https://doi.org/10.1007/s10701-015-9912-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-015-9912-7

Keywords

Navigation