Foundations of Physics

, Volume 45, Issue 6, pp 691–706 | Cite as

T Violation and the Unidirectionality of Time: Further Details of the Interference



T violation has previously been shown to induce destructive interference between different paths that the universe can take through time which leads to a new quantum equation of motion called bievolution. Here we examine further details of the interference and clarify the conditions needed for the bievolution equation.


CP violation T violation Kaons Arrow of time Quantum interference Quantum foundations 


  1. 1.
    Andrianov, A.A., Taron, J., Tarrach, R.: Neutral kaons in medium: decoherence effects. Phys. Lett. B 507, 200 (2001). doi: 10.1016/S0370-2693(01)00463-4 CrossRefADSGoogle Scholar
  2. 2.
    Bertlmann, R.A., Hiesmayr, B.C.: Kaonic qubits. Quantum Inf. Process. 5, 421 (2006). doi: 10.1007/s11128-006-0026-1 CrossRefMATHGoogle Scholar
  3. 3.
    Berger, Ch., Sehgal, L.M.: CP violation and arrows of time: evolution of a neutral K or B meson from an incoherent to a coherent state. Phys. Rev. D 76, 036003 (2007). doi: 10.1103/PhysRevD.76.036003 CrossRefADSGoogle Scholar
  4. 4.
    Courbage, M., Durt, T., Saberi Fathi, S.M.: Dissipative dynamics of the kaon decay process. J. ACM 15, 71–78 (2010). doi: 10.1016/j.cnsns.2009.01.020 MATHMathSciNetGoogle Scholar
  5. 5.
    Di Domenico, A., Gabriel, A., Hiesmayr, B.C., Hipp, F., Huber, M., Krizek, G., Mohlbacher, K., Radic, S., Spengler, C., Theussl, L.: Heisenberg’s uncertainty relation and bell inequalities in high energy physics. Found. Phys. 42, 778–802 (2012). doi: 10.1007/s10701-011-9575-y CrossRefADSMATHMathSciNetGoogle Scholar
  6. 6.
    Berger, Ch., Sehgal, L.M.: Flow of entropy in the evolution of the \(B^0-\bar{B}^0\) system: upper bound on CP violation from unidirectionality. Phys. Rev. D 86, 057901 (2012). doi: 10.1103/PhysRevD.86.057901 CrossRefADSGoogle Scholar
  7. 7.
    Bramon, A., Escribano, R., Garbarino, G.: Bell’s inequality tests with Meson–Antimeson pairs. Found. Phys. 36, 563 (2006)CrossRefADSMATHMathSciNetGoogle Scholar
  8. 8.
    Bernabeu, J., Mavromatos, N.E., Papavassiliou, J., Waldron-Lauda, A.: Intrinsic CPT violation and decoherence for entangled neutral mesons. Nucl. Phys. B 744, 180 (2006)CrossRefADSGoogle Scholar
  9. 9.
    Bramon, A., Escribano, R., Garbarino, G.: Bell’s inequality tests: from photons to B-mesons. J. Mod. Opt. 52, 1681 (2005)CrossRefADSMATHGoogle Scholar
  10. 10.
    Go, A.: Observation of Bell inequality violation in B mesons. J. Mod. Opt. 51, 991–998 (2004)CrossRefADSMATHGoogle Scholar
  11. 11.
    Gerber, H.-J.: Searching for evolutions from pure states into mixed states with entangled neutral kaons. Eur. Phys. J. C 32, 229 (2004)CrossRefADSGoogle Scholar
  12. 12.
    Genovese, M.: Entanglement properties of kaons and tests of hidden-variable models. Phys. Rev. A 69, 022103 (2004)CrossRefADSGoogle Scholar
  13. 13.
    Bertlmann, R.A., Bramon, A., Garbarino, G., Hiesmayr, B.C.: Violation of a Bell inequality in particle physics experimentally verified? Phys. Lett. A 332, 355 (2004)CrossRefADSMATHGoogle Scholar
  14. 14.
    Bertlmann, R.A., Durstberger, K., Hiesmayr, B.C.: Decoherence of entangled kaons and its connection to entanglement measures. Phys. Rev. A 68, 012111 (2003). doi: 10.1103/PhysRevA.68.012111 CrossRefADSGoogle Scholar
  15. 15.
    Samal, M.K., Home, D.: Violation of Bell’s inequality in neutral kaons system. Pramana 59, 289 (2002)CrossRefADSGoogle Scholar
  16. 16.
    Bramon, A., Garbarino, G.: Test of local realism with entangled kaon pairs and without inequalities. Phys. Rev. Lett. 89, 160401 (2002)CrossRefADSGoogle Scholar
  17. 17.
    Barnett, S.M., Kraemer, T.: CP violation, EPR correlations and quantum state discrimination. Phys. Lett. A 293, 211 (2002)CrossRefADSMATHMathSciNetGoogle Scholar
  18. 18.
    Gisin, N., Go, A.: EPR test with photons and kaons: analogies. Am. J. Phys. 69, 264 (2001)CrossRefADSGoogle Scholar
  19. 19.
    Andrianov, A.A., Taron, J., Tarrach, R.: Neutral kaons in medium: decoherence effects. Phys. Lett. B 507, 200 (2001). doi: 10.1016/S0370-2693(01)00463-4 CrossRefADSGoogle Scholar
  20. 20.
    Bertlmann, R.A., Hiesmayr, B.C.: Bell inequalities for entangled kaons and their unitary time evolution. Phys. Rev. A 63, 062112 (2001)CrossRefADSGoogle Scholar
  21. 21.
    Bertlmann, R.A., Grimus, W., Hiesmayr, B.C.: Bell inequality and CP violation in the neutral kaon system. Phys. Lett. A 289, 21 (2001)CrossRefADSMATHGoogle Scholar
  22. 22.
    Bohm, A.: Time-asymmetric quantum physics. Phys. Rev. A 60, 861 (1999)CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Foadia, R., Sellerib, F.: Quantum mechanics versus local realism and a recent EPR experiment on \(K^0 \bar{K}^0\) pairs. Phys. Lett. B 461, 123 (1999)CrossRefADSGoogle Scholar
  24. 24.
    Ancochea, B., Bramon, A., Nowakowski, M.: Bell inequalities for \(K^0K^0\) pairs from F-resonance decays. Phys. Rev. D 60, 094008 (1999)CrossRefADSGoogle Scholar
  25. 25.
    Bramon, A., Nowakowski, M.: Bell inequalities for entangled pairs of neutral kaons. Phys. Rev. Lett. 83, 1 (1999)CrossRefADSMATHMathSciNetGoogle Scholar
  26. 26.
    Bohm, A.: Irreversible quantum mechanics in the neutral \(K\)-system. Int. J. Theor. Phys. 30, 2239–2269 (1997)CrossRefGoogle Scholar
  27. 27.
    Corbett, J.V.: Quantum mechanical measurement of non-orthogonal states and a test of non-locality. Phys. Lett. A 130, 419 (1988)CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    Squires, E.J.: Non-self-adjoint observables. Phys. Lett. A 130, 192 (1988)CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Datta, A., Home, D., Raychaudhuri, A.: Is quantum mechanics with CP nonconservation incompatible with Einstein’s Locality condition at the statistical level? Phys. Lett. A 130, 187 (1988)CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    Clifton, R.K., Redhead, M.L.G.: The compatibility of correlated CP violating systems with statistical locality. Phys. Lett. A 126, 295 (1988)CrossRefADSGoogle Scholar
  31. 31.
    Finkelstein, J., Stapp, H.P.: CP violation does not make faster-then-light communication possible. Phys. Lett. A 126, 159 (1987)CrossRefADSGoogle Scholar
  32. 32.
    Squires, E., Siegwart, D.: CP violation and the EPR experiment. Phys. Lett. A 126, 73 (1987)CrossRefADSGoogle Scholar
  33. 33.
    Lindblad, G.: Comment on a curious gedanken experiment involving superluminal communication. Phys. Lett. A 126, 71 (1987)CrossRefADSGoogle Scholar
  34. 34.
    Hall, M.J.W.: Imprecise measurements and non-locality in quantum mechanics. Phys. Lett. A 125, 89 (1987)CrossRefADSGoogle Scholar
  35. 35.
    Datta, A., Home, D., Raychaudhuri, A.: A curious gedanken example of the Einstein–Podolsky–Rosen paradox using CP nonconservation. Phys. Lett. A 123, 4 (1987)CrossRefADSGoogle Scholar
  36. 36.
    Angelopoulos, A., et al.: First direct observation of time-reversal non-invariance in the neutral-kaon system. Phys. Lett. B 444, 43–51 (1998). doi: 10.1016/S0370-2693(98)01356-2 CrossRefADSGoogle Scholar
  37. 37.
    Lees, J.P., et al.: Observation of time-reversal violation in the \(B^0\) meson system. Phys. Rev. Lett. 109, 211801 (2012). doi: 10.1103/PhysRevLett.109.211801 CrossRefADSGoogle Scholar
  38. 38.
    Aiello, M., Castagnino, M., Lombardi, O.: The arrow of time: from universe time-asymmetry to local irreversible processes. Found. Phys. 38, 257 (2008). doi: 10.1007/s10701-007-9202-0 CrossRefADSMATHMathSciNetGoogle Scholar
  39. 39.
    Fassarella, L.: Dispersive quantum systems. Braz. J. Phys. 42, 84–99 (2012). doi: 10.1007/s13538-011-0053-y CrossRefADSGoogle Scholar
  40. 40.
    Vaccaro, J.A.: T violation and the unidirectionality of time. Found. Phys. 41, 1569–1596 (2011). doi: 10.1007/s10701-011-9568-x CrossRefADSMATHMathSciNetGoogle Scholar
  41. 41.
    Price, H.: Time’s Arrow and Archimedes’ Point. Oxford University Press, New York (1996)Google Scholar
  42. 42.
    Wigner, E.P.: Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra. Academic Press, New York (1959)MATHGoogle Scholar
  43. 43.
    Carroll, S.M., Chen, J.: Spontaneous inflation and the origin of the arrow of time (2004). arXiv:hep-th/0410270
  44. 44.
    Carroll, S.M.: The cosmic origins of time’s arrow. Sci. Am. 298, 48–57 (2008)CrossRefGoogle Scholar
  45. 45.
    Barbour, J., Koslowski, T., Mercati, F.: Identification of a gravitational arrow of time. Phys. Rev. Lett. 113, 181101 (2014)CrossRefADSGoogle Scholar
  46. 46.
    Vaccaro, J.A.: Quantum asymmetry between time and space (2015). arXiv:1502.04012

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Centre for Quantum DynamicsGriffith UniversityBrisbaneAustralia

Personalised recommendations