Foundations of Physics

, Volume 45, Issue 7, pp 783–798 | Cite as

Deformed Entropy and Information Relations for Composite and Noncomposite Systems

  • Vladimir N. Chernega
  • Olga V. Man’ko
  • Vladimir I. Man’ko


The notion of conditional entropy is extended to noncomposite systems. The \(q\)-deformed entropic inequalities, which usually are associated with correlations of the subsystem degrees of freedom in bipartite systems, are found for the noncomposite systems. New entropic inequalities for quantum tomograms of qudit states including the single qudit states are obtained. The Araki–Lieb inequality is found for systems without subsystems.


Marginal probability distribution Composite system Entropy Deformation Conditional entropy Information relations 



O.V.M. thanks the Organizers of the Conference ”Quantum Theory: from Problems to Advances” and especially Prof. A. Khrennikov for invitation and kind hospitality.


  1. 1.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 623–656 (1948)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Rényi, A.: Probability Theory. North-Holland, Amsterdam (1970)Google Scholar
  3. 3.
    Tsallis, C.: Nonextensive statistical mechanics and thermodynamics: historical background and present status. In: Abe, S., Okamoto, Y. (eds.) Lecture Notes in Physics. Nonextensive statistical mechanics and its applications, vol. 560, pp. 3–98. Springer, Berlin (2001)Google Scholar
  4. 4.
    Landau, L.D.: The damping problem in wave mechanics. Z. Physik. 45, 430 (1927)MATHADSCrossRefGoogle Scholar
  5. 5.
    von Neumann, J.: Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik. Nach. Ges. Wiss. Göttingen. 11, 245–272 (1927)Google Scholar
  6. 6.
    Furuci, S., Yanagi, K., Kuriyama, K.: Fundamental properties of Tsallis relative entropy. J. Math. Phys. 45, 4868–4877 (2004)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Furuci, S.: Information theoretical properties of Tsallis entropy. J. Math. Phys. 47, 023302-1–023302-18 (2006)ADSGoogle Scholar
  8. 8.
    Petz, D., Virosztek, D.: Some inequalities for quantum Tsallis entropy related to the strong subadditivity. arXiv:1403.7062v2 [math-ph] (2014)
  9. 9.
    Robinson, D.W., Ruelle, D.: Mean entropy of states in classical statistical mechanis. Commun. Math. Phys. 5, 288–300 (1967)MATHMathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Lieb, E.H., Ruskai, M.B.: Proof of the strong subadditivity of quantum mechanichal entropy. J. Math. Phys. 14, 1938–1948 (1973)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Man’ko, M.A., Man’ko, V.I.: Quantum strong subadditivity condition for systems without subsystems. arXiv:1312.6988 (2013). Phys. Scr. T160, 014030 (2014)
  12. 12.
    Chernega, V.N., Man’ko, V.I.: State extended uncertainty relations and tomographic inequalities as quantum system state characteristics. Int. J. Quantum Inform. 10, 124101 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Man’ko, M. A., Man’ko, V. I.: Entanglement and other quantum correlations of a single qudit state. Int. J. Quantum Inform. 2014, DOI: 10.1142/S0219749915600060
  14. 14.
    Man’ko, M. A., Man’ko, V. I., Marmo, G., et al.: Introduction to Tomography, Classical and Quantum. Nuovo Cimmento C. 36, Ser. 3, 163–182 (2013)Google Scholar
  15. 15.
    Mancini, S., Man’ko, V.I., Tombesi, P.: Symplectic tomography as classical approach to quantum systems. Phys. Lett. A. 213, 1–6 (1996)MATHMathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Man’ko, O.V., Man’ko, V.I.: Quantum state in probability representation and tomography. J. Russ. Laser Res. 18, 407–444 (1997)CrossRefGoogle Scholar
  17. 17.
    Dodonov, V.V., Man’ko, V.I.: Positive distribution description for spin states. Phys. Lett. A 229, 335–339 (1997)MATHMathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Man’ko, V.I., Man’ko, O.V.: Spin state tomography. J. Exp. Theor. Phys. 85, 430–434 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    Man’ko, M.A., Man’ko, V.I.: Probability description and entropy of classical and quantum systems. Found. Phys. 41, 330–344 (2011)MATHMathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Man’ko, M.A., Man’ko, V.I., Mendes, V.R.: A probabilistic operator symbol framework for quantum information. J. Russ. Laser Res. 27, 507–532 (2006)CrossRefGoogle Scholar
  21. 21.
    Holevo, A.S.: Lecture Notes in Physics, Monographs. Statistical structure of quantum theory. Springer, Berlin (2001)Google Scholar
  22. 22.
    Khrennikov, A.I.: Contextual Approach to Quantum Formalism. Springer, Berlin (2009)MATHCrossRefGoogle Scholar
  23. 23.
    Khrennikov, A.: Einsteins Dream: Quantum Mechanics as Theory of Classical Random Fields. arXiv:1204.5172v1 [quant-ph] (2012)
  24. 24.
    Khrennikov, A.I.: Born’s formula from statistical mechanics of classical fields and theory of hitting times. Physica A 393, 207–221 (2014)MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Chernega, V.N., Man’ko, V.I.: Qubit portrait of qudit states and Bell inequalities. J. Russ. Laser Res. 28, 103–124 (2007)CrossRefGoogle Scholar
  26. 26.
    Lupo, C., Man’ko, V.I., Marmo, G.: Qubit portraits of qudit states and quantum correlations. J. Phys. A 40, 13091 (2007)MATHMathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Ibort, A., Man’ko, V.I., Marmo, G., et al.: An introduction to the tomographic picture of quantum mechanics. Phys. Scr. 79, 065013 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Man’ko, M.A., Man’ko, V.I.: The maps of matrices and portrait maps of density operators of composite and noncomposite systems. arXiv:1404.3650[quant-ph] (2014)
  29. 29.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  30. 30.
    Nielsen, M.A., Petz, D.: A simple proof of the strong subadditivity inequality. arXiv:quant-ph/0408130 (2005)
  31. 31.
    Carlen, E.A., Lieb, E.H.: A Minkowski type trace inequality and strong subadditivity of quantum entropy II: convexity and concavity. Lett. Math. Phys. 83, 107–126 (2008); arXiv:0710.4167 (2007)
  32. 32.
    Araki, H., Lieb, E.H.: Entropy inequalities. Commun. Math. Phys. 18, 160–170 (1970)MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    Lieb, E.H.: Some convexity and subadditivity properties of entropy. Bull. AMS. 81, 1–13 (1975)MATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Ruskai, M.B.: Inequalities for quantum entropy: a review with conditions for equality. J. Math. Phys. 43, 4358–4375 (2002); erratum 46, 019901 (2005)Google Scholar
  35. 35.
    Carlen, E.A., Lieb, E.H.: Remainder terms for some quantum entropy inequalities. arXiv:1402.3840 [quant-ph] (2014)
  36. 36.
    Chernega, V.N., Man’ko, O.V.: Generalized qubit portrait of the qutrit state density matrix. J. Russ. Laser Res. 34, 383–387 (2013)CrossRefGoogle Scholar
  37. 37.
    Chernega, V.N., Man’ko, O.V.: Tomographic and improved subadditivety conditions for two qubits and qudit with \(j=3/2\). J. Russ. Laser Res. 35, 27–38 (2014)CrossRefGoogle Scholar
  38. 38.
    Chernega, V.N., Man’ko, O.V., Man’ko, V.I.: New inequality for density matrices of single qudit states. J. Russ. Laser Res. 35, 457–461 (2014)CrossRefGoogle Scholar
  39. 39.
    Chernega, V.N., Man’ko, O.V., Man’ko, V.I.: Subadditivity condition for spin-tomograms and density matrices of arbitrary composite and noncomposite qudit systems. J. Russ. Laser Res. 35, 278–290 (2014)CrossRefGoogle Scholar
  40. 40.
    Kiktenko, E.O., Fedorov, A.K., Man’ko, O.V., Man’ko, V.I.: Entropic inequalities for noncomposite quantum systems realized by supersonducting circuits. arXiv:1411.0157v1 (2014)
  41. 41.
    Rastegin, A.E.: Formulation of Leggett-Garg inequalities in terms of q-entropies. arXiv:1403.6945v3 [quant-ph] (2014)

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.P.N. Lebedev Physical InstituteMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)DolgoprudnyRussia

Personalised recommendations