Foundations of Physics

, Volume 45, Issue 10, pp 1351–1361 | Cite as

Quantum Logic and Quantum Reconstruction

  • Allen StairsEmail author


Quantum logic understood as a reconstruction program had real successes and genuine limitations. This paper offers a synopsis of both and suggests a way of seeing quantum logic in a larger, still thriving context.


Quantum logic Quantum mechanics Lattice theory  Orthomodular lattices POVMs 


  1. 1.
    Piron, Constantin: Axiomatique quantique. Helv. Phys. Acta 37, 439–468 (1964)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Keller, H.A.: Ein nicht-klassischer Hilbertscher raum. Mathematische Zeitschrift 172, 41–49 (1980)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Solèr, M.P.: Characterization of Hilbert spaces with orthomodular spaces. Commun. Algebra 23, 219–243 (1995)zbMATHCrossRefGoogle Scholar
  4. 4.
    Holland, S.S. Jr. Orthomodularity in infinite dimensions; a theorem of M. Solèr. Bull. Am. Math. Soc. 32(2), (1995)Google Scholar
  5. 5.
    Pitowsky, I.: Quantum mechanics as a theory of probability. In: Demopoulos, W., Pitowsky, I. (eds.) Physical Theory and Its Interpretation: Essay in Honor of Jeffrey Bub. Springer, Western Ontario Series in Philosophy of Science, New York (2006)Google Scholar
  6. 6.
    Schrödinger, Erwin: Discussion of probability relations between separated systems. Proc. Camb. Philos. Soc. 31, 555–563 (1935)CrossRefADSGoogle Scholar
  7. 7.
    Stairs, Allen: On the logic of pairs of quantum systems. Synthese 56, 47–60 (1983)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Tsirelson, B.S.: Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4, 93–100 (1980)MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    Popescu, Sandu, Rohrlich, Daniel: Quantum nonlocality as an axiom. Found. Phys. 24, 379 (1994)MathSciNetCrossRefADSGoogle Scholar
  10. 10.
    Stairs, Allen, Bub, Jeffrey: Correlations, contextuality and quantum logic. J. Philos. Log. 42, 483–499 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Holland, S.S. Jr.: The current interest in orthomodular lattices. In Abbott, J.C. (ed.) Trends in Lattice Theory, pp. 41–126. Van Nostrand Reinhold, New York, (1970). Reprinted in The Logico-Algebraic Approach to Quantum Mechanics, Vol. 1, pp. 437–496. C.A. Hooker, D. Reidel Publishing Company, Dodrecht (1975)Google Scholar
  12. 12.
    Halvorson, H., Bub, J.: Can quantum cryptography imply quantum mechanics? Reply to Smolin (2009). arXiv:quant-ph/0412063v1
  13. 13.
    Pitowsky, Itamar: Betting on the outcomes of measurements: a Bayesian theory of quantum probability. Stud. Hist. Philos. Mod. Phys. 34, 395–414 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Gleason, A.N.: Measures on the closed sub-spaces of Hilbert spaces. J. Math. Mech. 6, 885–893 (1957)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Jauch, J.M., Piron, C.: On the structure of quantal propositional systems. Helv. Phys. Acta 42, 842–848 (1969)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Wilce, A.: Quantum logic and probability theory. In Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2012).
  17. 17.
    Howard, Mark, Wallman, Joel, Veitch, Victor, Emerson, Joseph: Contextuality supplies the ‘magic’ for quantum computation. Nature 510, 351–355 (2014)ADSGoogle Scholar
  18. 18.
    Cabello, A., Severini, S., Winter, A.: Graph-theoretic approach to quantum correlations. Phys. Rev. Lett. 112, 040401 (2014)CrossRefADSGoogle Scholar
  19. 19.
    Busch, Paul: Quantum states and generalized observables: a simple proof of Gleason’s theorem. Phys. Rev. Lett. 91(12), 120403 (2003)MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    Caves, Carlton M., Fuchs, Christopher A., Manne, Kiran K., Renes, Joseph M.: Gleason-type derivations of the quantum probability rule for generalized measurements. Found. Phys. 34(2), 193–209 (2004)zbMATHMathSciNetCrossRefADSGoogle Scholar
  21. 21.
    Cabello, Adán: Kochen-Specker theorem for a single qubit using positive operator-valued measures. Phys. Rev. Lett. 90(19), 190401 (2003)MathSciNetCrossRefADSGoogle Scholar
  22. 22.
    Gianpiero Cattaneo, Maria Luisa Dalla Chiara, Roberto Giuntini, and Francesco Paoli. Quantum logic and nonclassical logics. In Kurt Engesser, Dov M. Gabbay, and Daniel Lehrman, editors, Handbook of Quantum Logic and Quantum Structures: Quantum Logic, pages 127–226. North Holland, Amsterdam, 2009Google Scholar
  23. 23.
    Busch, Paul, Jaeger, Gregg: Unsharp quantum reality. Found. Phys. 40, 1341–1367 (2010)zbMATHMathSciNetCrossRefADSGoogle Scholar
  24. 24.
    Stairs, Allen: POVMs and hidden variables. Phys. Lett. A 365, 268–272 (2007)zbMATHMathSciNetCrossRefADSGoogle Scholar
  25. 25.
    Lucien Hardy. Quantum theory from five reasonable axioms (2001). arXiv e-print arXiv:quant-ph/0101012
  26. 26.
    Maria Luisa Dalla Chiara and Roberto Giuntini. Quantum logics (2008). arXiv:quant-ph/0101028v2
  27. 27.
    Cabello, A., Danielsen, L.E., López-Tarrida, A.J., Portillo, J.R.: Basic exclusivity graphs in quantum correlations. Phys. Rev. A 88, 032104 (2013)CrossRefADSGoogle Scholar
  28. 28.
    Cabello, Adán: Simple explanation of the quantum violation of a fundamental inequality. Phys. Rev. Lett. 110(6), 060402 (2013)MathSciNetCrossRefADSGoogle Scholar
  29. 29.
    Bub, J.: Quantum probabilities: an information-theoretic interpretation. In: Beisbart, C., Hartmann, S. (eds.) Probabilities in Physics, pp. 231–262. Oxford University Press, Oxford (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Philosophy DepartmentUniversity of MarylandCollege ParkUSA

Personalised recommendations