Skip to main content
Log in

Spin-Statistics Connection for Relativistic Quantum Mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The spin-statistics connection has been proved for nonrelativistic quantum mechanics (Jabs in Found Phys 40:776–792, 2010). The proof is extended here to the relativistic regime using the parametrized Dirac equation. A causality condition is not required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For minor corrections to that article see arXiv:1406.0750.

  2. positive-energy particles propagating forward in time, and negative-energy particles backward in time.

  3. positive-energy particles propagating backward in time, and negative-energy particles forward in time.

References

  1. Itzykson, C., Zuber, J.-B.: Quantum Field Theory. Dover, Mineola, NY (2005)

    Google Scholar 

  2. Weinberg, S.: The Quantum Theory of Fields, Vol. 1. Foundations. Cambridge University Press, Cambridge and New York (1995)

  3. Zee, A.: Quantum Field Theory in a Nutshell. Princeton University Press, Princeton, NJ (2003)

  4. Srednicki, M.: Quantum Field Theory. Cambridge University Press, Cambridge and New York (2007)

    Book  MATH  Google Scholar 

  5. Weinberg, S.: Lectures on Quantum Mechanics. Cambridge University Press, Cambridge and New York (2013)

    MATH  Google Scholar 

  6. Bjorken, J.D., Drell, S.D.: Relativistic Quantum Mechanics. International Series in Pure and Applied Physics. McGraw-Hill, New York, NY (1964)

    Google Scholar 

  7. Jabs, A.: Connecting spin and statistics in quantum mechanics. Found. Phys. 40, 776–792 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Garcia Alvarez, E.T., Gaioli, F.H.: Feynman’s proper time approach to QED. Found. Phys. 28(10), 1529–1538 (1998)

    Article  MathSciNet  Google Scholar 

  9. Barut, A.O., Thacker, W.C.: Covariant generalization of the zitterbewegung of the electron and its SO(4,2) and SO(3,2) internal algebras. Phys. Rev. D 31(6), 1386–1392 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  10. Evans, A.B.: On expected values and “negative probability” in 4-space QED. Found. Phys. 28, 291–306 (1998)

    Article  MathSciNet  Google Scholar 

  11. Bennett, A.F.: First quantized electrodynamics. Ann. Phys. 345, 1–16 (2014)

    Article  ADS  Google Scholar 

  12. Taylor, J.R.: Scattering Theory: The Quantum Theory of Nonrelativistic Collisions. Wiley, New York (1972)

    Google Scholar 

  13. Boyer, T.H.: Derivation of the blackbody radiation spectrum without quantum assumptions. Phys. Rev. 182(5), 1374–1383 (1969)

    Article  ADS  Google Scholar 

  14. Boyer, T.H.: Random electrodynamics: the theory of classical electrodynamics with classical electromagnetic zero-point radiation. Phys. Rev. D 11(4), 790–808 (1975)

    Article  ADS  Google Scholar 

  15. Camparo, J.C.: Semiclassical random electrodynamics: spontaneous emission and the Lamb shift. J. Opt. Soc. Am. B 16(1), 173–181 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  16. Fox, M.: Quantum Optics. Oxford Master Series in Atomic, Optical and Laser Physics. Oxford University Press, New York, NY (2006)

  17. Greenstein, G., Zajonc, A.G.: The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics. Physics and Astronomy, 2nd edn. Jones & Bartlett Learning, Sudbury, MA (2005)

    Google Scholar 

  18. Thorn, J.J., Neel, M.S., Donato, V.W., Bergreen, G.S., Davies, R.E., Beck, M.: Observing the quantum behavior of light in an undergraduate laboratory. Am. J. Phys. 72(9), 1210–1219 (2004)

    Article  ADS  Google Scholar 

  19. de la Peña, L., Cetto, A.M.: The Quantum Dice, Volume 75 of Fundamental Theories of Physics. Kluwer Academic Publishers, Dordrecht (1996)

    Google Scholar 

  20. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. III. Addison-Wesley, Reading, MA (1965)

    MATH  Google Scholar 

  21. Cho, A.: Higgs boson makes debut after decades-long search. Science 337(6091), 141–143 (2012)

    Article  ADS  Google Scholar 

  22. Cho, A.: Higgs boson makes debut after decades-long search. Science 337(6097), 911 (2012)

    ADS  Google Scholar 

  23. Stueckelberg, E.C.G.: La signification du temps propre en mécanique ondulataire. Helv. Phys. Acta 14, 322–323 (1941)

    MathSciNet  Google Scholar 

  24. Stueckelberg, E.C.G.: Remarque à propos de la création de paires de particles en théorie de relativité. Helv. Phys. Acta 14, 588–594 (1941)

    MathSciNet  Google Scholar 

  25. Stueckelberg, E.C.G.: La mécanique du point matérial en théorie de relativité et en théorie des quanta. Helv. Phys. Acta 15, 23–37 (1942)

    MathSciNet  Google Scholar 

  26. Sozzi, M.: Discrete Symmetries and CP Violation: From Experiment to Theory. Oxford University Press, New York, NY (2008)

    Google Scholar 

  27. Summers, S.J.: Yet more ado about nothing: the remarkable relativistic vacuum state. In: Halvorson, H. (ed.) Deep Beauty, pp. 317–341. Cambridge University Press, Cambridge and New York (2011)

    Chapter  Google Scholar 

  28. Haag, R.: Quantum field theories with composite particles and asympotic conditions. Phys. Rev. 112(2), 669–673 (1958)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Araki, H., Hepp, K., Ruelle, D.: On the asymptotic behaviour of wightman functions in space-like directions. Helv. Phys. Acta 35(III), 164–174 (1962)

    MATH  MathSciNet  Google Scholar 

  30. Fredenhagen, K.: A remark on the cluster theorem. Commun. Math. Phys. 97, 461–463 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Reznik, B., Retzker, A., and Silman, J.: Violating Bell’s inequalities in vacuum. Phy. Rev. A, 71(042104) (2005)

  32. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40(8), 4277–4281 (1989)

  33. Sabin, C., del Rey, M., García-Ripoll, J.J., and León, J.: Fermi problem with artificial atoms in circuit QED. Phys. Rev. Lett., 107(150402) (2011)

  34. Sabin, C., Peropadre, B., del Rey, M., and Martín-Martínez, E.: Extracting past-future vacuum correlations using circuit QED. Phys. Rev. Lett., 109(033602) (2012)

  35. Jonsson, R.H., Martín-Martínez, E., and Kempf, A.: Quantum signaling in cavity QED. Phys. Rev. A, 89(022330) (2014)

  36. Scherübl, Z., Pályi, A., and Csonka, S.: Probing individual split Cooper pairs using the spin qubit toolkit. Phys. Rev. B, 89(205439) (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Bennett.

Appendix: Linear Algebra

Appendix: Linear Algebra

Given \(w_+=\mathsf{w}_+ {\mathbf a}_+=\Lambda _+ w_+\), we seek \(w_-\) such that \(w_-=\Lambda _- w_-\) and \(S(s)w=+(1/2)w\) where \(w=w_++w_-\). The required \(w_-\) must satisfy

$$\begin{aligned} Q(s)\Lambda _-w_-=-Q(s)w_+, \end{aligned}$$
(19)

which has a solution if and only if \(\overline{z}Q(s)w_+=0\) for all \(z\) such that \(\overline{z}Q(s)\Lambda _-=0\). It suffices to consider a frame in which \(s^\mu =(0,0,0,1)\), and so \(Q(s)=\mathrm { diag}(0,1,1,0)\). Assuming \(p\cdot s= p_3 \ne 0\), it follows that \(z_2=z_3=0\) while \(z_1\) and \(z_4\) are arbitrary. Hence \(\overline{z}Q(s)=0\). The solution of (19) for \(w_-\) is undetermined up to the addition of \(\Lambda _+b\) for any \(b\), but \(w_-=\Lambda _- w_-\) is uniquely determined.

Consider two free particles with timelike energy-momenta \(p^\mu \) and \(q^\mu \), where \(p \cdot s =p_3 \ne 0\) but \(q \cdot s = q_3 =0\). There is a boost \(\Omega \) to a new frame where \(p'=\Omega p\)  and \(q'=\Omega q\), with \(p_3' \ne 0\) and \(q_3' \ne 0\). The common spin axis (0,0,0,1) in the old frame may be replaced with (0,0,0,1) in the new frame. The procedure may be performed any finite number of times for any finite number of particles, with \(p_3', q_3',\dots \) remaining bounded away from zero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennett, A.F. Spin-Statistics Connection for Relativistic Quantum Mechanics. Found Phys 45, 370–381 (2015). https://doi.org/10.1007/s10701-015-9869-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-015-9869-6

Keywords

Navigation