Skip to main content
Log in

Relations Between Different Notions of Degrees of Freedom of a Quantum System and Its Classical Model

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

There are at least three different notions of degrees of freedom (DF) that are important in comparison of quantum and classical dynamical systems. One is related to the type of dynamical equations and inequivalent initial conditions, the other to the structure of the system and the third to the properties of dynamical orbits. In this paper, definitions and comparison in classical and quantum systems of the tree types of DF are formulated and discussed. In particular, we concentrate on comparison of the number of the so called dynamical DF in a quantum system and its classical model. The comparison involves analyzes of relations between integrability of the classical model, dynamical symmetry and separability of the quantum and the corresponding classical systems and dynamical generation of appropriately defined quantumness. The analyzes is conducted using illustrative typical systems. A conjecture summarizing the observed relation between generation of quantumness by the quantum dynamics and dynamical properties of the classical model is formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Landsman, N.P.: Mathematical Topics Between Classical and Quantum Mechanics. Springer, New York (1998)

    Book  Google Scholar 

  2. d’Espagnat, B.: Reality and the Physicist. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  3. Dowling, J.P., Milburn, G.J.: Quantum technology: the second quantum revolution. Phil. Trans. R. Soc. A 361, 3655 (2003)

    Article  MathSciNet  Google Scholar 

  4. Dragoman, D., Dragoman, M.: Quantum-Classical Analogies. Springer, New York (2004)

    Book  MATH  Google Scholar 

  5. Zhang, W.M., Martins, C.C., Feng, D.H., Yuan, J.M.: Dynamical symmetry breaking and quantum nonintegrability. Phys. Rev. Lett 61, 2167 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  6. Zhang, W.M., Feng, D.H., Yuan, J.M.: Integrability and nonintegrability of quantum systems: quantum integrability and dynamical symmetry. Phys. Rev. A 40, 438 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  7. Zhang, W.M., Feng, D.H., Yuan, J.M.: Integrability and nonintegrability of quantum systems. II. Dynamics in quantum phase space. Phys. Rev. A 42, 7125 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  8. Barnum, H., Knill, E., Ortiz, G., Viola, L.: Generalizations of entanglement based on coherent states and convex sets. Phys. Rev. A 68, 032308 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  9. Barnum, H., Knill, E., Ortiz, G., Somma, R., Viola, L.: A subsystem-independent generalization of entanglement. Phys. Rev. Lett. 92, 107902 (2004)

    Article  ADS  Google Scholar 

  10. Viola, L., Barnum, H., Knill, E., Ortiz, G., Soma, R.: Entanglement beyond subsystems. arXiv:quant-ph/0403044 (2004)

  11. Klyachko, A.: Dynamic symmetry approach to entanglement. arXiv:0802.4008 [quant-ph] (2008)

  12. Zanardi, P., Lidar, D.A., Lloyed, S.: Quantum tensor product structures are observable-induced. arXiv:quant-ph/0308043 (2003)

  13. Radonjić, M., Prvanović, S., Burić, N.: System of classical nonlinear oscillators as a coarse-grained quantum system. Phys. Rev. A 84, 022103 (2011)

    Article  ADS  Google Scholar 

  14. Radonjić, M., Prvanović, S., Burić, N.: Emergence of classical behavior from the quantum spin. Phys. Rev. A 85, 022117 (2012)

    Article  ADS  Google Scholar 

  15. Ashtekar, A., Schilling, T.A.: On Einsteins Path, Harvey, A. (ed.). Springer, Berlin (1998)

  16. Brody, D.C., Hughston, L.P.: Geometric quantum mechanics. J. Geom. Phys. 38, 19 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Ercolessi, E., Marmo, G., Morandi, G.: La Rivista del Nuovo Cimento 33, p. 401 (2010)

  18. Guillemin, V., Sternberg, S.: Symplectic Techniques in Physics. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  19. Umberger, D.K., Farmer, J.D.: Fat fractals on the energy surface. Phys. Rev. Lett. 55, 661 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  20. Buric, N., Percival, I.C.: Modular smoothing and KAM tori. Physica D 71, 39 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Perelomov, A.M.: Generalzed Coherent States and Their Applications. Springer, Berlin (1986)

    Book  Google Scholar 

  22. Zhang, W.M., Feng, D.H., Gilmore, R.: Coherent states: theory and some applications. Rev. Mod. Phys. 62, 867 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  23. Buric, N.: Dynamical entanglement versus symmetry and dynamics of classical approximations. Phys. Rev. A 73, 052111 (2006)

    Article  ADS  Google Scholar 

  24. Buric, N.: Hamiltonian quantum dynamics with separability constraints. Ann. Phys. (NY) 233, 17 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  25. Tabor, M.: Chaos and Integrability in Nonlinear Systems. An introduction. Wiley, New York (1989)

    Google Scholar 

  26. Giannoni, M.-J., Voros, A., Zinn-Justin, J. (eds.): Chaos and Quantum Physics. Les Houshes session LII. North-Holland, Amsterdam (1991)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Ministry of Education and Science of the Republic of Serbia, under Project No. \(171017\)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola Burić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burić, N. Relations Between Different Notions of Degrees of Freedom of a Quantum System and Its Classical Model. Found Phys 45, 253–278 (2015). https://doi.org/10.1007/s10701-014-9858-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-014-9858-1

Keywords

Navigation