Skip to main content
Log in

Reversible Heat Engines: Bounds on Estimated Efficiency from Inference

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We consider work extraction from two finite reservoirs with constant heat capacity, when the thermodynamic coordinates of the process are not fully specified, i.e., are described by probabilities only. Incomplete information refers to both the specific value of the temperature as well as the label of the reservoir to which it is assigned. Based on the concept of inference, we characterize the reduced performance resulting from this lack of control. Indeed, the estimates for the average efficiency reveal that uncertainty regarding the exact labels reduces the maximal expected efficiency below the Carnot value (\(\eta _\mathrm{C}\)), its minimum value reproducing the well known Curzon–Ahlborn value: \(1-\sqrt{1-\eta _\mathrm{C}}\). We also estimate the efficiency before the value of the temperature is revealed. It is found that if the labels are known with certainty, then in the near-equilibrium limit the efficiency scales as \(\eta _\mathrm{C}/2\), while if there is maximal uncertainty in the labels, then the average estimate for efficiency drops to \(\eta _\mathrm{C}/3\). We also suggest how the inferred properties of the incomplete model can be mapped onto a model with complete information but with an additional source of thermodynamic irreversibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goyal, P.: Information physics—towards a new conception of physical reality. Information 3, 567–594 (2012)

    Article  Google Scholar 

  2. Bernoulli, J.: The Art of Conjecturing, Together with Letter to a Friend on Sets in Court Tennis (trans: Sylla, E. D.), Johns Hopkins University Press, Baltimore ( 2006).

  3. Laplace, P.S.: Memoir on the probabilities of the causes of events (trans: Stigler, S.M.). Stat. Sci. 1, 364–378 (1986).

  4. Bayes, T.: An essay towards solving a problem in the doctrine of chances. Contributed by Mr. Price, Philos. Trans. R. Soc. Lond. 53, 370–418 (1763).

  5. Cox, R.T.: Probability, Frequency and Reasonable Expectation. Am. J. Phys. 17, 1–13 (1946)

    Article  ADS  Google Scholar 

  6. Cox, R.T.: Algebra of Probable Inference. The Johns Hopkins University Press, Baltimore (2001)

    Google Scholar 

  7. Jeffreys, H.: Scientific Inference. Cambridge University Press, Cambridge (1931)

    Google Scholar 

  8. Jeffreys, H.: Theory of Probability, 2nd edn. Clarendon Press, Oxford (1948)

    MATH  Google Scholar 

  9. Polya, G.: Mathematics and Plausible Reasoning, Vol. I and II. Princeton University Press, Princeton (1954)

    Google Scholar 

  10. Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  11. Caves, C.M., Fuchs, C.A., Schack, R.: Quantum probabilities as Bayesian probabilities. Phys. Rev. A 65, 022305 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  12. Fuchs, C.A., Schack, R.: A quantum-Bayesian route to quantum state space. Found. Phys. 41, 345–356 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. von Baeyer, H.C.: Quantum Weirdness? It’s all in your mind. Sci. Am. 308, 46–51 (2013)

    Article  Google Scholar 

  14. Curzon, F.L., Ahlborn, B.: Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 43, 22–24 (1975)

    Article  ADS  Google Scholar 

  15. Bizarro, J.P.S.: Entropy production in irreversible processes with friction. Phys. Rev. E 78, 021137 (2008)

    Article  ADS  Google Scholar 

  16. Bizarro, J.P.S.: The thermodynamic efficiency of heat engines with friction. Am. J. Phys. 80, 298–305 (2012)

    Article  ADS  Google Scholar 

  17. Angulo-Brown, F., Fernndez-Betanzos, J., Daz-Pico, C.A.: Compression ratio of an optimized air standard Otto-cycle model. Eur. J. Phys. 15, 38 (1994)

    Article  Google Scholar 

  18. Gordon, J.M.: Generalized power versus efficiency characteristics of heat engines: the thermoelectric generator as an instructive illustration. Am. J. Phys. 59, 551–555 (1991)

    Article  ADS  Google Scholar 

  19. Ondrechen, M.J., Andresen, B., Mozurkewich, M., Berry, R.S.: Maximum work from a finite reservoir by sequential Carnot cycles. Am. J. Phys. 49, 681–685 (1981)

    Article  ADS  Google Scholar 

  20. Leff, H.S.: Available work from a finite source and sink: how effective is a Maxwell’s demon. Am. J. Phys. 55, 701–705 (1987)

    Article  ADS  Google Scholar 

  21. Jaynes, E.T.: Information theory and statistical mechanics. In: Ford, W.K. (ed.) Statistical Physics (1962 Brandeis Lectures), Benjamin, New York (1963)

  22. Keizer, J.: Statistical Thermodynamics of Non-equilibrium Processes. Springer, New York (1987)

    Book  Google Scholar 

  23. Callen, H.B.: Thermodynamics and an Introduction to Thermostatistics, 2nd edn. Wiley, Hoboken (1985)

    MATH  Google Scholar 

  24. Zemansky, M.W., Dittman, R.H.: Heat and Thermodynamics: an Intermediate Textbook, 7th edn. McGraw-Hill, New York (1997)

    Google Scholar 

  25. Johal, R.S.: Universal efficiency at optimal work with Bayesian statistics. Phys. Rev. E 82, 061113 (2010)

    Article  ADS  Google Scholar 

  26. Thomas, G., Johal, R.S.: Expected behavior of quantum thermodynamic machines with prior information. Phys. Rev. E 85, 041146 (2012)

    Article  ADS  Google Scholar 

  27. Aneja, P., Johal, R.S.: Prior probabilities and thermal characteristics of heat engines. In: Proceedings of Sigma-Phi International Conference on Statistical Physics-2011, Cent. Eur. J. Phys. 10 (3), pp. 708–714 (2012).

  28. Thomas, G., Aneja, P., Johal, R.S.: Informative priors and the analogy between quantum and classical heat engines. In: Proceedings of International Conference on Frontiers of Quantum and Mesoscopic Thermodynamics-2011, Phys. Scr. T151, p. 014031 (2012).

  29. Aneja, P., Johal, R.S.: Prior information and inference of optimality in thermodynamic processes. J. Phys. A Math. Theor. 46, 365002 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  30. Reif, F.: Fundamentals of Statistical and Thermal Physics, Problem 5.23. McGraw-Hill, New York (1981)

    Google Scholar 

  31. De Vos, A.: Efficiency of some heat engines at maximum power conditions. Amer. J. Phys. 53, 570–573 (1985)

    Article  ADS  Google Scholar 

  32. Van den Broeck, C.: Thermodynamic efficiency at maximum power. Phys. Rev. Lett. 95, 190602 (2005)

    Article  Google Scholar 

  33. Zhang, Y., Lin, B.H., Chen, J.C.: Performance characteristics of an irreversible thermally driven Brownian microscopic heat engine. Eur. Phys. J. B 53, 481–485 (2006)

    Article  ADS  Google Scholar 

  34. Barato, A.C., Seifert, U.: An autonomous and reversible Maxwell’s demon. Europhys. Lett. 101, 60001 (2013)

    Article  ADS  Google Scholar 

  35. Jaynes, E.T.: The Evolution of Carnot’s principle. In: Erickson, G.J., Smith, C.R. (eds.) Maximum-Entropy and Bayesian Methods in Science and Engineering, 1. Kluwer, Dordrecht (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramandeep S. Johal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johal, R.S., Rai, R. & Mahler, G. Reversible Heat Engines: Bounds on Estimated Efficiency from Inference. Found Phys 45, 158–170 (2015). https://doi.org/10.1007/s10701-014-9856-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-014-9856-3

Keywords

Navigation