Advertisement

Foundations of Physics

, Volume 45, Issue 9, pp 1019–1045 | Cite as

Less Interpretation and More Decoherence in Quantum Gravity and Inflationary Cosmology

  • Elise M. CrullEmail author
Article

Abstract

I argue that quantum decoherence—understood as a dynamical process entailed by the standard formalism alone—carries us beyond conceptual aspects of non-relativistic quantum mechanics deemed insurmountable by many contributors to the recent quantum gravity and cosmology literature. These aspects include various incarnations of the measurement problem and of the quantum-to-classical puzzle. Not only can such problems be largely bypassed or dissolved without default to a particular interpretation, but theoretical work in relativistic arenas stands to gain substantial physical and philosophical insight by incorporating decoherence phenomena.

Keywords

Decoherence Quantum mechanics Cosmology Quantum gravity Measurement problem Interpretation 

References

  1. 1.
    Adler, S.L.: Why decoherence has not solved the measurement problem: a response to P.W. Anderson. Stud. Hist. Philos. Mod. Phys. 34B, 135–142 (2003)CrossRefGoogle Scholar
  2. 2.
    Albert, D., Loewer, B.: Some alleged solutions to the measurement problem. Synthese 86, 87–98 (1990)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Anderson, P.: Reply to Cartwright. Stud. Hist. Philos. Mod. Phys. 32, 499–500 (2001a)CrossRefGoogle Scholar
  4. 4.
    Anderson, P.: Science: a ‘dappled world’ or a ‘seamless web’? Stud. Hist. Philos. Mod. Phys. 32, 487–494 (2001b)CrossRefGoogle Scholar
  5. 5.
    Arndt, M., Nairz, O., Vos-Andreae, J., Keller, C., van der Zouw, G., Zeilinger, A.: Wave-particle duality of C\(_{60}\) molecules. Nature 401, 680–682 (1999)CrossRefADSGoogle Scholar
  6. 6.
    Arndt, M., Nairz, O., Zeilinger, A.: Interferometry with macromolecules: quantum paradigms tested in the mesoscopic world. In: Bertlmann, R., Zeilinger, A. (eds.) Quantum [Un]Speakables: From Bell to Quantum Information, pp. 333–351. Springer, Berlin (2002)CrossRefGoogle Scholar
  7. 7.
    Bacciagaluppi, G.: The role of decoherence in quantum mechanics. The Stanford Encyclopedia of Philosophy (Winter 2012 Edition), In: Zalta, E.N. (ed.) (2012). http://plato.standford.edu/archives/win2012/entries/qm-decoherence/
  8. 8.
    Bernu, J., Deleglise, S., Sayrin, C., Kuhr, S., Dotsenko, I., Brune, M., Raimond, J.-M., Haroche, S.: Freezing coherent field growth in a cavity by the quantum zeno effect. Phys. Rev. Lett. 101, 180402 (2008)CrossRefADSGoogle Scholar
  9. 9.
    Bitbol, M.: Decoherence and the constitution of objectivity. In: Bitbol, M., Kerszberg, P., Petitot, J. (eds.) Constituting Objectivity: Transcendental Perspectives on Modern Physics, The Western Ontario Series in Philosophy of Science, pp. 347–357. Springer, Berlin (2009)CrossRefGoogle Scholar
  10. 10.
    Brezger, B., Hackermüller, L., Uttenthaler, S., Petschinka, J., Arndt, M., Zeilinger, A.: Matter-wave interferometer for large molecules. Phys. Rev. Lett. 88, 100404 (2002)CrossRefADSGoogle Scholar
  11. 11.
    Crull, E.: Exploring philosophical implications of quantum decoherence. Philos. Compass 8(9), 875–885 (2013)CrossRefGoogle Scholar
  12. 12.
    Cucchietti, F., Paz, J., Zurek, W.: Decoherence from spin environments. Phys. Rev. A 72(5), 052113. (2005)CrossRefADSGoogle Scholar
  13. 13.
    Esfeld, M., Vassallo, A.: From quantum gravity to classical phenomena. In: Sauer, T., Wüthrich, A. (eds.) New Vistas on Old Problems. Max Planck Research Library for the History and Development of Knowledge (2013)Google Scholar
  14. 14.
    Gambini, R., Porto, R.A., Pullin, J.: Realistic clocks, universal decoherence and the black hole information paradox. Phys. Rev. Lett. 93, 240401 (2004a)MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    Gambini, R., Porto, R.A., Pullin, J.: A relational solution to the problem of time in quantum mechanics and quantum gravity: a fundamental mechanism for quantum decoherence. New J. Phys. 6, 45 (2004b)CrossRefADSGoogle Scholar
  16. 16.
    Gambini, R., Porto, R.A., Pullin, J.: Fundamental decoherence from quantum gravity: a pedagogical review. Gen. Relat. Gravit. 39(8), 1143–1156 (2007)zbMATHMathSciNetCrossRefADSGoogle Scholar
  17. 17.
    Goldstein, S., Teufel, S.: Quantum spacetime without observers: Ontological clarity and the conceptual foundations of quantum gravity. In: Callender, C., Huggett, N. (eds.) Physics Meets Philosophy at the Planck Scale: Contemporary Theories in Quantum Gravity, pp. 275–289. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  18. 18.
    Hackermüller, L., Uttenthaler, S., Hornberger, K., Reiger, E., Brezger, B., Zeilinger, A., Arndt, M.: Wave nature of biomolecules and fluorofullerenes. Phys. Rev. Lett. 91, 090408 (2003)CrossRefADSGoogle Scholar
  19. 19.
    Hatano, N.: Non-Hermitian quantum mechanics and localization in physical systems. In: Ono, Y., Fujikawa, K. (eds.) Quantum Coherence and Decoherence, North-Holland Delta Series, pp. 319–322. Elsevier, Amsterdam (1999)Google Scholar
  20. 20.
    Joos, E., Zeh, H.: The emergence of classical properties through interaction with the environment. Zeitschrift für Physik B 59, 223–243 (1985)CrossRefADSGoogle Scholar
  21. 21.
    Kiefer, C.: Decoherence in quantum electrodynamics and quantum cosmology. Phys. Rev. D 46, 1658 (1992)CrossRefADSGoogle Scholar
  22. 22.
    Kiefer, C.: Topology, decoherence, and semiclassical gravity. Phys. Rev. D 47, 5414–5421 (1993)MathSciNetCrossRefADSGoogle Scholar
  23. 23.
    Kiefer, C., Lesgourgues, J., Polarski, D., Starobinsky, A.A.: The coherence of primordial fluctuations produced during inflation. Class. Quantum Gravity 15(10), L67 (1998b)zbMATHCrossRefADSGoogle Scholar
  24. 24.
    Kiefer, C., Lohmar, I., Polarski, D., Starobinsky, A.A.: Pointer states for primordial fluctuations in inflationary cosmology. Class. Quantum Gravity 24(7), 1699 (2007)zbMATHMathSciNetCrossRefADSGoogle Scholar
  25. 25.
    Kiefer, C., Polarski, D.: Why do cosmological perturbations look classical to us? Adv. Sci. Lett. 2(2), 164–173 (2009)CrossRefGoogle Scholar
  26. 26.
    Kiefer, C., Polarski, D., Starobinsky, A.A.: Quantum-to-classical transition for fluctuations in the early universe. Int. J. Mod. Phys. D 7(3), 455 (1998)zbMATHCrossRefADSGoogle Scholar
  27. 27.
    Kiefer, C., Schell, C.: Interpretation of the triad orientations in loop quantum cosmology. Class. Quantum Gravity 30(3), 035008 (2013)MathSciNetCrossRefADSGoogle Scholar
  28. 28.
    Kokorowski, D.A., Cronin, A.D., Robers, T.D., Pritchard, D.E.: From single- to multiple-photon decoherence in an atom interferometer. Phys. Rev. Lett. 86(11), 2191–2195 (2001)CrossRefADSGoogle Scholar
  29. 29.
    Longhi, S.: Optical realization of relativistic non-Hermitian quantum mechanics. Phys. Rev. Lett. 105, 013903 (2010)CrossRefADSGoogle Scholar
  30. 30.
    Maudlin, T.: Three measurement problems. Topoi 14, 7–15 (1995)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Monroe, C., Meekhof, D., King, B.E., Wineland, D.J.: A ‘Schrödinger cat’ superposition state of an atom. Science 272, 1131 (1996)zbMATHMathSciNetCrossRefADSGoogle Scholar
  32. 32.
    Mukhanov, V.F.: Physical Foundations of Cosmology. Cambridge University Press, Cambridge (2005)zbMATHCrossRefGoogle Scholar
  33. 33.
    Myatt, C.J., King, B.E., Turchette, Q., Sackett, C.A., Kielpinski, D., Itano, W.M., Monroe, C., Wineland, D.J.: Decoherence of quantum superpositions through coupling to engineered reservoirs. Nature 403, 269–273 (2000)CrossRefADSGoogle Scholar
  34. 34.
    Okon, E., Sudarsky, D.: Benefits of objective collapse models for cosmology and quantum gravity. Found. Phys. 44(2), 114–143 (2014)zbMATHMathSciNetCrossRefADSGoogle Scholar
  35. 35.
    Raimond, J.-M., Haroche, S.: Monitoring the decoherence of mesoscopic quantum superpositions in a cavity. Séminar Poincaré 2, 25–64 (2005)Google Scholar
  36. 36.
    Rotter, I.: A non-Hermitian Hamilton operator and the physics of open quantum systems. J. Phys. A: Math. Theor. 42(15), 153001 (2009)MathSciNetCrossRefADSGoogle Scholar
  37. 37.
    Schlosshauer, M.: Decoherence and the Quantum-to-Classical Transition, 2nd edn. Springer, Berlin (2007)Google Scholar
  38. 38.
    Shimony, A.: Search for a worldview which can accommodate our knowledge of microphysics. In: Cushing, J., McMullin, E. (eds.) Philosophical Consequences of Quantum Theory, pp. 25–37. University of Notre Dame Press, Notre Dame (1989)Google Scholar
  39. 39.
    Tolkunov, D., Privman, V.: Short-time decoherence for general system–environment interactions. Phys. Rev. A 69(6), 062309 (2004)MathSciNetCrossRefADSGoogle Scholar
  40. 40.
    Wallace, D.: Quantum Mechanics, ch 1. In: Rickles D. (ed.) The Ashgate Companion to Contemporary Philosophy of Physics, Ashgate, Burlington, VT (2008)Google Scholar
  41. 41.
    Zeh, H.: On the interpretation of measurement in quantum theory. Found. Phys. 1, 69–76 (1970)CrossRefADSGoogle Scholar
  42. 42.
    Zeh, H. Ch 2: Basic concepts and their interpretation. quant-ph/9506020v3 (2002)
  43. 43.
    Znojil, M.: Scattering theory using smeared non-Hermitian potentials. Phys. Rev. D 80(4), 045009 (2009)MathSciNetCrossRefADSGoogle Scholar
  44. 44.
    Zurek, W.: Environment-induced superselection rules. Phys. Rev. D 26, 1862–1880 (1982)MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.The City University of New YorkNew YorkUSA

Personalised recommendations