Skip to main content
Log in

The role of quantum recurrence in superconductivity, carbon nanotubes and related gauge symmetry breaking

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Pure quantum phenomena are characterized by intrinsic recurrences in space and time. We use this intrinsic periodicity as a quantization condition to derive a heuristic description of the essential quantum phenomenology of superconductivity. The resulting description is based on fundamental quantum dynamics and geometrical considerations, rather than on microscopical characteristics of the superconducting materials. This allows us to investigate the related gauge symmetry breaking in terms of the competition between quantum recurrence and thermal noise. We also test the validity of this approach to describe the case of carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. The semiclassical quantization of the magnetic flux induced by the PBCs is similar to the quantization of the angular momentum in a cylindric Schrödinger problem. The quantum number \(n\) can also be regarded as describing the quantized angular momentum of the current. Thus, for momentum conservation, once that a current is created \(n \ge 1\) it cannot decay to the state \(n=0\). A similar effect can be observed in superfluidity of a toroidal Bose–Einstein condensate where the case with zero angular momentum is only possible by introducing a potential barrier that breaks the rotational invariance of the superflow [29].

  2. By considering the relativistic modulation of time periodicity (relativistic Doppler effect) associated to boosts of an elementary particle, the resulting dispersion relation of the energy spectrum is \(E_{n}(\bar{\mathbf p} ) = n \bar{E} (\bar{\mathbf p} ) = n h / T(\bar{\mathbf p} ) = n \sqrt{ \bar{m} ^{2} c^{4} + {\bar{ \mathbf p }}^{2} c^{2}}\). The energy bands of a material are the analogous of the quantum levels of the energy spectrum of a second quantized field. The vacuum energy \(n h / 2 T(\bar{\mathbf p} )\) corresponds to half twist, anti-PBCs. Interaction between the ECCs and the atom in the lattice can result in deformations of this perfectly harmonic band structure.

  3. For a more accurate evaluation we must consider the reduced speed of light in the material.

  4. As in particular lattice configurations of Armchair CNs [21], the local extremal point in the dispersion relation of the time periodicity determining the mass spectrum of the ECC may occur with small residual values of the axial momentum.

  5. It is possible to show in several different ways that the PBCs of the matter field induces a periodicity to the related gauge field (modulo gauge transformation), as for instance by considering the effect of the PBCs of the gauge connection (15) or by using the similar formalism of field theory at finite temperature (Euclidean periodicity), as shown in [30]. A detailed description of this aspect is given in [6].

References

  1. de Broglie, L.: Recherches sur la théorie des quanta. Ann. Phys. 3, 22 (1925)

    MATH  Google Scholar 

  2. Lan, S.-Y., Kuan, P.-C., Estey, B., English, D., Brown, J.M., Hohensee, M.A., Müller, H.: A clock directly linking time to a particle’s mass. Science 339, 554–557 (2013)

    Article  ADS  Google Scholar 

  3. Catillon, P., Cue, N., Gaillard, M.J., Genre, R., Gouanère, M., Kirsch, R.G., Poizat, J.-C., Remillieux, J., Roussel, L., Spighel, M.: A search for the de Broglie particle internal clock by means of electron channeling. Found. Phys. 38, 659–664 (2008)

    Article  ADS  Google Scholar 

  4. Dolce, D.: Elementary spacetime cycles. Europhys. Lett. 102, 31002 (2013)

    Article  ADS  Google Scholar 

  5. Dolce, D.: Compact time and determinism for Bosons: foundations. Found. Phys. 41, 178–203 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Dolce, D.: Gauge interaction as periodicity modulation. Ann. Phys. 327, 1562–1592 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Solov’ev, E.A.: Classical approach in atomic physics. Eur. Phys. J. D 65, 331–351 (2011)

  8. Stodolna, A.S., Rouzée, A., Lépine, F., Cohen, S., Robicheaux, F., Gijsbertsen, A., Jungmann, J.H., Bordas, C., Vrakking, M.J.J.: Hydrogen atoms under magnification: direct observation of the nodal structure of stark states. Phys. Rev. Lett. 110, 213001 (2013)

    Article  ADS  Google Scholar 

  9. Little, W.A., Parks, R.D.: Observation of quantum periodicity in the transition temperature of a superconducting cylinder. Phys. Rev. Lett. 9, 9–12 (1962)

    Article  ADS  Google Scholar 

  10. Lurié, D., Cremer, S.: Superconductive zitterbewegung. Prog. Theor. Phys. 44, 300–302 (1970)

    Article  ADS  Google Scholar 

  11. Loder, F.: Magnetic flux periodicity of h/e in superconducting loops. Nat. Phys. 4(2), 112–115 (2007)

    Article  Google Scholar 

  12. Weinberg, S.: The Quantum Theory of Fields. Modern Applications, vol. 2. Cambridge University Press, Cambridge (1996). see par. 21.6

    Book  Google Scholar 

  13. ‘t Hooft, G.: The cellular automaton interpretation of quantum mechanics. arXiv:1405.1548

  14. ‘t Hooft, G.: A mathematical theory for deterministic quantum mechanics, J. Phys: Conf. Ser. 67, 012015 (2007)

  15. Wilczek, F.: Quantum time crystals, Phys. Rev. Lett. 109, 160401 (2012)

  16. Yoshii, R., Takada, S., Tsuchiya, S., Marmorini, G., Hayakawa, H., Nitta, M.: Time crystal phase in superconducting ring. arXiv:1404.3519

  17. Nambu, Y.: Quasi-particles and gauge invariance in the theory of superconductivity. Phys. Rev. 117, 648–663 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  18. Goldstone, J.: Field theories with “superconductor” solutions, Il. Nuovo Cimento 19, 154–164 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  19. Higgs, P.W.: Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  20. Guralnik, G.S., Hagen, C.R., Kibble, T.W.B.: Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585–587 (1964)

    Article  ADS  Google Scholar 

  21. de Woul, J., Merle, A., Ohlsson, T.: Establishing analogies between the physics of extra dimensions and carbon nanotubes. Phys. Lett. B714, 44–47 (2012)

    Article  ADS  Google Scholar 

  22. Dolce, D.: Classical geometry to quantum behavior correspondence in a virtual extra dimension. Ann. Phys. 327, 2354–2387 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Sundrum, R.: Tasi 2004 lectures: to the fifth dimension and back 585–630. http://arxiv.org/abs/hep-th/0508134 (2005)

  24. Csaki, C., Hubisz, J., Meade, P.: TASI lectures on electroweak symmetry breaking from extra dimensions 703–776. http://arxiv.org/abs/hep-ph/0510275 (2005)

  25. Arkani-Hamed, N., Cohen, A.G., Georgi, H.: (de)constructing dimensions. Phys. Rev. Lett. 86, 4757–4761 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  26. Son, D.T., Stephanov, M.A.: QCD and dimensional deconstruction. Phys. Rev. D69, 065020 (2004)

    ADS  Google Scholar 

  27. Scherk, J., Schwarz, J.H.: How to get masses from extra dimensions. Nucl. Phys. B 153, 61–88 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  28. Hosotani, Y.: Dynamical mass generation by compact extra dimensions. Phys. Lett. B 126, 309–313 (1983)

    Article  ADS  Google Scholar 

  29. Piazza, F., Collins, L.A., Smerzi, A.: Critical velocity for a toroidal Bose–Einstein condensate flowing through a barrier. J. Phys. B At. Mol. Phys. 46, 095302 (2013)

    ADS  Google Scholar 

  30. Zinn-Justin, J.: Quantum field theory at finite temperature: an introduction. http://arxiv.org/abs/hep-ph/0005272 (2000)

  31. Fernandez de Cordoba, P., Isidro, J.M., Perea, M.H.: Emergent quantum mechanics as a thermal ensemble. http://arxiv.org/abs/1304.6295 (2013)

  32. Charlier, J.-C., Blase, X., Roche, S.: Electronic and transport properties of nanotubes. Rev. Mod. Phys. 79, 677–732 (2007)

    Article  ADS  Google Scholar 

  33. Altomare, F., Chang, A.: One-Dimensional Superconductivity in Nanowires. Wiley, Weinheim (2013)

    Book  Google Scholar 

  34. White, J.W.M.C.T.: Density of states reflects diameter in nanotubes. Nature 394, 29–30 (1998)

    Article  ADS  Google Scholar 

  35. Zou, K., Hong, X., Zhu, J.: Electron–electron interaction and electron–hole asymmetry in bilayer graphene. Phys. Rev. B 84, 085408 (2011)

    Article  ADS  Google Scholar 

  36. Perali, A., Neilson, D., Hamilton, A.R.: High-temperature superfluidity in double-bilayer graphene. Phys. Rev. Lett. 110, 146803 (2013)

    Article  ADS  Google Scholar 

  37. Shanenko, A.A., Croitoru, M.D., Vagov, A.V., Axt, V.M., Perali, A., Peeters, F.M.: Atypical BCS-BEC crossover induced by quantum-size effects. Phys. Rev. A 86, 033612 (2012)

    Article  ADS  Google Scholar 

  38. Perali, A., Bianconi, A., Lanzara, A., Saini, N.L.: The gap amplification at a shape resonance in a superlattice of quantum stripes: a mechanism for high Tc. Solid State Commun. 100, 181–186 (1996)

    Article  ADS  Google Scholar 

  39. Kaluza, T.: On the problem of unity in physics. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1921, 966–972 (1921)

    Google Scholar 

  40. Klein, O.: Quantum theory and five-dimensional theory of relativity. Z. Phys. 37, 895–906 (1926)

    Article  ADS  MATH  Google Scholar 

  41. Witten, E.: Anti-de sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 2, 505–532 (1998)

    MATH  MathSciNet  Google Scholar 

  42. Dolce, D., Perali, A.: Probing the origin of particle’s mass in graphene systems (2013)

  43. Domenech, O., Montull, M., Pomarol, A., Salvio, A., Silva, P.J.: Emergent gauge fields in holographic superconductors. JHEP 1008, 033 (2010)

    Article  ADS  Google Scholar 

  44. Pollet, L., Prokof’ev, N.: Higgs mode in a two-dimensional superfluid. Phys. Rev. Lett. 109, 010401 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donatello Dolce.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolce, D., Perali, A. The role of quantum recurrence in superconductivity, carbon nanotubes and related gauge symmetry breaking. Found Phys 44, 905–922 (2014). https://doi.org/10.1007/s10701-014-9816-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-014-9816-y

Keywords

Navigation