Skip to main content
Log in

Can Quantum Gravity be Exposed in the Laboratory?

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

I propose an experiment that may be performed, with present low temperature and cryogenic technology, to reveal Wheeler’s quantum foam. It involves coupling an optical photon’s momentum to the center of mass motion of a macroscopic transparent block with parameters such that the latter is displaced in space by approximately a Planck length. I argue that such displacement is sensitive to quantum foam and will react back on the photon’s probability of transiting the block. This might allow determination of the precise scale at which quantum fluctuations of space–time become large, and so differentiate between the brane-world and the traditional scenarios of spacetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bekenstein, J.D.: Is a tabletop search for Planck scale signals feasible? Phys. Rev. D 86, 124040 (2012)

    Article  ADS  Google Scholar 

  2. Jacobson, T., Liberati, S., Mattingly, D.: Lorentz violation at high energy: concepts, phenomena, and astrophysical constraints. Ann. Phys. 321, 150 (2006)

    Article  ADS  MATH  Google Scholar 

  3. Abdo, A., Ackermann, M., Ajello, M., et al.: A limit on the variation of the speed of light arising from quantum gravity effects. Nature 462, 331 (2009)

    Article  ADS  Google Scholar 

  4. Mureika, J., Nicolini, P., Spallucci, E.: Could any black holes be produced at the LHC? Phys. Rev. D 85, 106007 (2012)

    Article  ADS  Google Scholar 

  5. Randall, L., Sundrum, R.: An alternative to compactification. Phys. Rev. Lett. 83, 4690 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Dvali, G., Gabadadze, G., Porrati, M.: On sub-millimeter forces from extra dimensions. Mod. Phys. Lett. A 15, 1717 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Zwiebach, B.: First Course in String Theory, pp. 54–57. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  8. Ali, A.F., Das, S., Vagenas, E.C.: Proposal for testing quantum gravity in the lab. Phys. Rev. D 84, 044013 (2011)

    Article  ADS  Google Scholar 

  9. Pikovski, I., Vanner, M.R., Aspelmeyer, M., Kim, M., Brukner, C.: Probing Planck-scale physics with quantum optics. Nat. Phys. 8, 393 (2012)

    Article  Google Scholar 

  10. Hogan, C.: Interferometers as probes of Planckian quantum geometry. Phys. Rev. D 85, 064007 (2012)

    Article  ADS  Google Scholar 

  11. Faddeev, L.D.: New dynamical variables in Einstein’s theory of gravity. Theor. Math. Phys. 166, 279 (2011)

    Article  MATH  Google Scholar 

  12. Ambjorn, J., Jurkiewicz, J., Loll, R.: Reconstructing the universe. Phys. Rev. D 72, 064014 (2005)

    Article  ADS  Google Scholar 

  13. Horava, P.: Quantum gravity at a Lifshitz point. Phys. Rev. D 79, 084008 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  14. Wheeler, J.A.: Geometrodynamics. Academic Press, New York (1962)

    MATH  Google Scholar 

  15. Abraham, M.: Zur Elektrodynamik bewegter Körper. Rendiconti del Circolo Matematico di Palermo 28, 1 (1909)

    Article  MATH  Google Scholar 

  16. Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media. Pergamon, Oxford (1984)

    Google Scholar 

  17. Frisch, O.R.: Take a photon. Contemp. Phys. 7, 45 (1965)

    Article  ADS  Google Scholar 

  18. Barnett, S.M.: Resolution of the Abraham–Minkowski dilemma. Phys. Rev. Lett. 104, 070401 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

I thank the participants of the “Horizons of Quantum Physics” workshop in Taipei, in particular Wei-Tou Ni, Lajos Djosi and Thomas Jennewein, for useful criticism, and Al Schwartz for advice. The present account was prepared with support from the I-CORE Program of the Planning and Budgeting Committee and the Israel Science Foundation (Grant No. 1937/12), as well as from the Israel Science Foundation personal Grant No. 24/12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob D. Bekenstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bekenstein, J.D. Can Quantum Gravity be Exposed in the Laboratory?. Found Phys 44, 452–462 (2014). https://doi.org/10.1007/s10701-014-9779-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-014-9779-z

Keywords

Navigation