Skip to main content
Log in

Quantum Field Theory of Black-Swan Events

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Free and weakly interacting particles are described by a second-quantized nonlinear Schrödinger equation, or relativistic versions of it. They describe Gaussian random walks with collisions. By contrast, the fields of strongly interacting particles are governed by effective actions, whose extremum yields fractional field equations. Their particle orbits perform universal Lévy walks with heavy tails, in which rare events are much more frequent than in Gaussian random walks. Such rare events are observed in exceptionally strong windgusts, monster or rogue waves, earthquakes, and financial crashes. While earthquakes may destroy entire cities, the latter have the potential of devastating entire economies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. See http://en.wikipedia.org/wiki/Black_swan_theory.

  2. See http://www.nytimes.com/2007/04/22/books/chapters/0422-1st-tale.html?pagewanted=all.

  3. Contrasting the 1994 book by R.J. Herrnstein and C. Murray entitled “The Bell Curve” http://de.wikipedia.org/wiki/The_Bell_Curve.

  4. See http://en.wikipedia.org/wiki/2010_Flash_Crash.

  5. A travelling pedestrian salesman is a Gaussian random walker, as a jetsetter he becomes a Lévy random walker.

  6. In two dimensions, a sequence of critical exponents have been tabulated in [23].

  7. For the so-called Riesz fractional derivative see [28, 29]. For the so-called Weyl derivative see [30]: \(\hat{p}_{4}^{1-\gamma}f(t)\equiv\varGamma^{-1}[1-\gamma]\int_{t}^{\infty}dt'(t-t'+i\epsilon)^{-2+\gamma} f(t')\).

  8. The relevant functional matrix is \(\langle\mathbf{x} |(-\boldsymbol{\nabla}^{2})^{\lambda/2}|\mathbf {x} '\rangle=\varGamma[-\lambda/2]^{-1} \int d\sigma\, \sigma^{-\lambda/2-1} {(4\pi\sigma)^{-D/2}}e^{R^{2}/4\sigma} = {}^{D} c_{\lambda}R^{-\lambda-D}\), where D c λ =2λ Γ((D+λ)/2)/π D/2 Γ(−λ/2), and R≡|xx′|. If λ is close to an even integer, it needs a small positive shift λλ +λ+ϵ and we can replace ϵR ϵ−1/2 by \(\delta(R)=S_{D}R^{D-1}\delta^{(D)}({\bf R})\). For A>0 we have \(|\mathbf{x}'|^{-A}= {}^{D}c_{\lambda_{A}}^{-1}\langle\mathbf{x}' | (-\boldsymbol{\nabla}^{2})^{\lambda_{A}/2}|\mathbf{0} \rangle\) with λ A AD, so that we find \(\int d^{D}x'\langle\mathbf{x} |(- \boldsymbol{\nabla}^{2})^{\lambda/2}|\mathbf {x}' \rangle|\mathbf{x}'|^{-A}= {}^{D}c_{\lambda_{A}}^{-1}\langle\mathbf{x}|(- \boldsymbol{\nabla}^{2})^{(\lambda+A-D)/2} |\mathbf{0}\rangle= {}^{D}c_{\lambda+A-D}{}^{D}c^{-1}_{\lambda_{A}}|\mathbf{x}|^{-A-\lambda}\).

  9. This technique is explained in Chaps. 12 and 19 of Ref. [4]. The pseudotime s resembles the so-called Schwinger proper time used in relativistic physics.

  10. There should be no danger of confusing the fluctuating noise variable η in this equation with the constant critical exponent η in (9).

  11. See Eq. (29.165) in Ref. [4].

  12. For a pedagogical discussion see [44].

  13. We ignore the problem that near the resonance it is hard to confine the particles to the trap. See [45].

  14. For the universal use of this functional see [46].

  15. See Eq. (1.35) in Ref. [26].

  16. The decimal numbers are from seven-loop calculation in D=3 dimensions in Table 20.2 of Ref. [26].

  17. See Eq. (10.191) in Ref. [26] and expand \(f(t/M^{1/\beta})\sim\tilde{f} (\xi \varPhi^{2/(D-2+\eta)}) \) like \(\tilde{f}(x)=1+cx^{-\omega}+\cdots{}\).

References

  1. Fock, V.: Phys. Z. Sowjetunion 12, 404 (1937)

    Google Scholar 

  2. Feynman, R.P.: Phys. Rev. 80, 440 (1950)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  4. Kleinert, H.: Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets. World Scientific, Singapore (2006)

    Book  MATH  Google Scholar 

  5. Kleinert, H.: Gauge Fields in Condensed Matter, vol. I. World Scientific, Singapore (1989)

    Book  MATH  Google Scholar 

  6. Black, F., Scholes, M.: J. Polit. Econ. 81, 637 (1973)

    Article  Google Scholar 

  7. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 2. Wiley, New York (1991)

    Google Scholar 

  8. Bouchaud, J.-P., Potters, M.: Theory of Financial Risks, from Statistical Physics to Risk Management. Cambridge University Press, Cambridge (2000). See also Chap. 20 in [4]

    Google Scholar 

  9. Einasto, J.: arXiv:1109.5580

  10. Angulo, R.E., Springel, V., White, S.D.M., Jenkins, A., Baugh, C.M., Frenk, C.S.: arXiv:1203.3216

  11. Du, J.: Europhys. Lett. 67, 893 (2004)

    Article  Google Scholar 

  12. Du, J.: Phys. Lett. A 329, 262 (2004)

    Article  ADS  MATH  Google Scholar 

  13. Nardini, C., Gupta, S., Ruffo, S., Dauxois, T., Bouchet, F.: J. Stat. Mech. 2012, L01002 (2012). http://arxiv.org/pdf/1111.6833.pdf

    Google Scholar 

  14. Boettcher, F., Renner, C., Waldl, H.P., Peinke, J.: physics/0112063

  15. Bhattacharyya, P., Chatterjee, A., Chakrabarti, B.K.: Physica A 381, 377 (2007). physics/0510038

    Article  ADS  Google Scholar 

  16. Umarov, S., Tsallis, C., Gell-Mann, M., Steinberg, S.: cond-mat/0606040

  17. Kleinert, H.: Phys. Rev. D 57, 2264 (1998). cond-mat/9801167

    Article  ADS  Google Scholar 

  18. Lipa, J.A., Nissen, J.A., Stricker, D.A., Swanson, D.R., Chui, T.C.P.: Phys. Rev. B 68, 174518 (2003)

    Article  ADS  Google Scholar 

  19. Barmatz, M., Hahn, I., Lipa, J.A., Duncan, R.V.: Rev. Mod. Phys. 79, 1 (2007). Also see picture on the titlepage of the textbook [26]

    Article  ADS  Google Scholar 

  20. Kleinert, H.: Phys. Lett. A 277, 205 (2000). cond-mat/9906107

    Article  ADS  Google Scholar 

  21. Kleinert, H.: Phys. Rev. D 60, 085001 (1999). hep-th/9812197

    Article  ADS  MathSciNet  Google Scholar 

  22. Kleinert, H.: Multivalued Fields in Condensed Matter, Electromagnetism, and Gravitation, pp. 1–497. World Scientific, Singapore (2008). http://klnrt.de/b11

    Book  MATH  Google Scholar 

  23. Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Nucl. Phys. B 241, 333 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Gribov, V.N., Migdal, A.A.: Sov. Phys. JETP 28, 7841 (1969)

    Google Scholar 

  25. Abarbanel, H.D., Bronzan, J.D., Sugar, R.L., White, A.R.: Phys. Rep. 21, 119 (1975) [in particular Eq. (4.27)]

    Article  ADS  Google Scholar 

  26. Kleinert, H., Schulte-Frohlinde, V.: Critical Properties of ϕ 4-Theories. World Scientific, Singapore (2001). klnrt.de/b8

    Book  Google Scholar 

  27. Gell-Mann, M., Low, F.E.: Phys. Rev. 95, 1300 (1954)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Metzler, R., Barkai, E., Klafter, J.: Phys. Rev. Lett. 82, 3564 (1999)

    Article  ADS  Google Scholar 

  29. West, B.J., Grigolini, P., Metzler, R., Nonnenmacher, T.F.: Phys. Rev. E 55, 99 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  30. Raina, R.K., Koul, C.L.: Proc. Am. Math. Soc. 73, 188 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  31. Duan, J.-S.: J. Math. Phys. 46, 013504 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  32. Fox, C.: Trans. Am. Math. Soc. 98, 395 (1961)

    MATH  Google Scholar 

  33. Laskin, N.: arXiv:1009.5533

  34. Laskin, N.: Phys. Lett. A 268, 298 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Laskin, N.: Phys. Rev. E 62, 3135 (2000)

    Article  ADS  Google Scholar 

  36. Laskin, N.: Phys. Rev. E 66, 056108 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  37. Laskin, N.: Chaos 10, 780 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. Laskin, N.: Commun. Nonlinear Sci. Numer. Simul. 12, 2 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Duru, I.H., Kleinert, H.: Phys. Lett. B 84, 30 (1979). klnrt.de/65/65.pdf

    Article  MathSciNet  Google Scholar 

  40. Duru, I.H., Kleinert, H.: Fortschr. Phys. 30, 401 (1982). klnrt.de/83/83.pdf. See also Chaps. 13 and 14 in [4]

    Article  MathSciNet  Google Scholar 

  41. Young, A., DeWitt-Morette, C.: Ann. Phys. 169, 140 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  42. Kleinert, H., Pelster, A.: Phys. Rev. Lett. 78, 565 (1997)

    Article  ADS  Google Scholar 

  43. Liang, L.Z.J., Lemmens, D., Tempere, J.: arXiv:1101.3713

  44. Zwierlein, M.: MIT Ph.D. thesis (2006). klnrt.de/papers/ZW.pdf

  45. Stenger, J., Inouye, S., Andrews, M.R., Miesner, H.-J., Stamper-Kurn, D.M., Ketterle, W.: Phys. Rev. Lett. 82, 2422 (1999)

    Article  ADS  Google Scholar 

  46. Kleinert, H.: Fortschr. Phys. 30, 187 (1982). klnrt.de/82

    Article  MathSciNet  Google Scholar 

  47. Bretin, V., Stock, V.S., Seurin, Y., Chevy, F., Dalibard, J.: Phys. Rev. Lett. 92, 050403 (2004)

    Article  ADS  Google Scholar 

  48. Pitaevskii, L.P., Stringari, S.: Bose-Einstein Condensation. Clarendon, Oxford (2003)

    MATH  Google Scholar 

  49. Yukalov, V.I.: Laser Phys. 19, 1 (2009). arXiv:0901.0636

    Article  ADS  Google Scholar 

  50. Schulz, H.J.: Fermi liquids and non-Fermi liquids. In: Akkermans, E., Montambaux, G., Pichard, J., Zinn-Justin, J. (eds.) Proceedings of Les Houches Summer School LXI, p. 533. Elsevier, Amsterdam (1995). arXiv:cond-mat/9503150

    Google Scholar 

  51. Pollack, S.E., Dries, D., Hulet, R.G., Magalhaes, K.M.F., Henn, E.A.L., Ramos, E.R.F., Caracanhas, M.A., Bagnato, V.S.: Phys. Rev. A 82, 020701(R) (2010)

    Article  Google Scholar 

  52. Donner, T., Ritter, S., Bourdel, T., Öttl, A., Köhl, M., Esslinger, T.: Science 315, 1556 (2007)

    Article  ADS  Google Scholar 

  53. Dalfovo, F., Giorgini, S., Pitaevskii, P., Stringari, S.: Rev. Mod. Phys. 71, 463–512 (1999) (Fig. 3)

    Article  ADS  Google Scholar 

  54. Hau, L.V., Busch, B.D., Liu, C., Dutton, Z., Burns, M.M., Golovchenko, J.A.: Phys. Rev. A 58, R54 (1998) (Fig. 2)

    Article  ADS  Google Scholar 

  55. Abarbanel, H.D., Bronzan, J.D.: Phys. Rev. D 9, 3304 (1974). See their Eq. (40)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I am grateful to P. Jizba, N. Laskin, M. Lewenstein, A. Pelster, and M. Zwierlein for useful comments, and to Fabio Scardigli, Luca Di Fiore, and Matteo Nespoli for their hospitality in Taipeh during their Workshop Horizons of Quantum Physics (http://www.quantumhorizons.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kleinert.

Appendix

Appendix

The lowest-order critical exponents can be extracted directly from the one-loop-corrected inverse Green function G −1(E,p) in D=2+ϵ dimensions after a minimal subtraction of the 1/ϵ -pole at [55]:

$$\begin{aligned} E-\mathbf{p}^2+ a \biggl( \frac{1}{3}\mathbf{p}^2-E \biggr)^{D-1}. \end{aligned}$$
(33)

For p=0, this has a power −(−E)1−, so that γ=. For E=0, on the other hand, we obtain (−p 2)1−/3, so that (1−γ)/z−1≈γ/3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleinert, H. Quantum Field Theory of Black-Swan Events. Found Phys 44, 546–556 (2014). https://doi.org/10.1007/s10701-013-9749-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-013-9749-x

Keywords

Navigation