Foundations of Physics

, Volume 43, Issue 10, pp 1182–1192 | Cite as

EPR States and Bell Correlated States in Algebraic Quantum Field Theory



A mathematical rigorous definition of EPR states has been introduced by Arens and Varadarajan for finite dimensional systems, and extended by Werner to general systems. In the present paper we follow a definition of EPR states due to Werner. Then we show that an EPR state for incommensurable pairs is Bell correlated, and that the set of EPR states for incommensurable pairs is norm dense between two strictly space-like separated regions in algebraic quantum field theory.


EPR states Bell correlated states Algebraic quantum field theory 



The author is supported by the JSPS KAKENHI, No.23701009 and the John Templeton Foundation Grant ID 35771.


  1. 1.
    Arens, R., Varadarajan, V.S.: On the concept of Einstein-Podolsky-Rosen states and their structure. J. Math. Phys. 41, 638–651 (2000) MathSciNetADSCrossRefMATHGoogle Scholar
  2. 2.
    Baumgärtel, H.: Operator Algebraic Methods in Quantum Field Theory. Akademie Verlag, Berlin (1995) Google Scholar
  3. 3.
    Bohata, M., Hamhalter, J.: Maximal violation of Bell’s inequalities and Pauli spin matrices. J. Math. Phys. 50, 082101 (2009) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Bohata, M., Hamhalter, J.: Bell’s correlations and spin systems. Found. Phys. 40, 1065–1075 (2010) MathSciNetADSCrossRefMATHGoogle Scholar
  5. 5.
    Cirel’son, B.S.: Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4, 93–100 (1980) MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935) ADSCrossRefMATHGoogle Scholar
  7. 7.
    Gisin, N.: Bell’s inequality holds for all non-product states. Phys. Lett. 154, 201–202 (1991) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Halvorson, H.: The Einstein-Podolsky-Rosen state maximally violates Bell’s inequalities. Lett. Math. Phys. 53, 321–329 (2000) MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Halvorson, H., Clifton, R.: Maximal beable subalgebras of quantum mechanical observables. Int. J. Theor. Phys. 38, 2441–2484 (1999) MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Halvorson, H., Clifton, R.: Generic Bell correlation between arbitrary local algebras in quantum field theory. J. Math. Phys. 41, 1711–1717 (2000) MathSciNetADSCrossRefMATHGoogle Scholar
  11. 11.
    Hofer-Szabó, G., Vecsernyés, P.: Noncommuting local common causes for correlations violating the Clauser-Horne inequality. J. Math. Phys. 53, 122301 (2012) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Hofer-Szabó, G., Vecsernyés, P.: Bell inequality and common causal explanation in algebraic quantum field theory (2012). arXiv:1204.5708 [quant-ph]
  13. 13.
    Huang, S.: On states of perfect correlation. J. Math. Phys. 49, 112101 (2008) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Landau, L.J.: On the violation of Bell’s inequality in quantum theory. Phys. Lett. 120, 54–56 (1987) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ozawa, M.: Quantum perfect correlations. Ann. Phys. 321, 744–769 (2006) ADSCrossRefMATHGoogle Scholar
  16. 16.
    Ozawa, M., Kitajima, Y.: Reconstructing Bohr’s reply to EPR in algebraic quantum theory. Found. Phys. 42, 475–487 (2012) MathSciNetADSCrossRefMATHGoogle Scholar
  17. 17.
    Rédei, M.: Quantum Logic in Algebraic Approach. Kluwer Academic, Dordrecht (1998) CrossRefMATHGoogle Scholar
  18. 18.
    Sakai, S.: C*-Algebra and W*-Algebras. Springer, New York (1971) CrossRefGoogle Scholar
  19. 19.
    Summers, S.J.: On the independence of local algebras in quantum field theory. Rev. Math. Phys. 2, 201–247 (1990) MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Summers, S.J., Werner, R.: Bell’s inequalities and quantum field theory. I. General setting. J. Math. Phys. 28, 2440–2447 (1987) MathSciNetADSCrossRefMATHGoogle Scholar
  21. 21.
    Werner, R.F.: EPR states for von Neumann algebras (1999). arXiv:quant-ph/9910077

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.College of Industrial TechnologyNihon UniversityNarashinoJapan

Personalised recommendations