Advertisement

Foundations of Physics

, Volume 44, Issue 5, pp 472–482 | Cite as

Quantum Gravity on a Quantum Computer?

  • Achim Kempf
Article

Abstract

EPR-type measurements on spatially separated entangled spin qubits allow one, in principle, to detect curvature. Also the entanglement of the vacuum state is affected by curvature. Here, we ask if the curvature of spacetime can be expressed entirely in terms of the spatial entanglement structure of the vacuum. This would open up the prospect that quantum gravity could be simulated on a quantum computer and that quantum information techniques could be fully employed in the study of quantum gravity.

Keywords

Quantum gravity Quantum computing Spectral geometry 

Notes

Acknowledgements

A.K. acknowledges support from the Discovery and Canada Research Chairs programmes of NSERC, as well as the kind hospitality during his sabbatical stay at the University of Queensland where this work was completed.

References

  1. 1.
    Gibbons, G., Hawking, S.W.: Euclidean Quantum Gravity. World Scientific, Singapore (1993) MATHGoogle Scholar
  2. 2.
    Rovelli, C.: Quantum Gravity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2004) CrossRefMATHGoogle Scholar
  3. 3.
    Kiefer, C.: Quantum Gravity. Oxford University Press, Oxford (2007) CrossRefMATHGoogle Scholar
  4. 4.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010) CrossRefMATHGoogle Scholar
  5. 5.
    Rideout, D., Jennewein, T., Amelino-Camelia, G., Demarie, T.F., Higgins, B.L., Kempf, A., Kent, A., Laflamme, R., Ma, X., Mann, R.B., Martin-Martinez, E., Menicucci, N.C., Moffat, J., Simon, Ch., Sorkin, R., Smolin, L., Terno, D.R.: Class. Quantum Gravity 29, 224011 (2012) ADSCrossRefGoogle Scholar
  6. 6.
    Kempf, A.: Phys. Rev. Lett. 103, 231301 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    Kempf, A.: New J. Phys. 12, 115001 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    Barcelo, C., Liberati, S., Visser, M.: Living Rev. Relativ. 14, 3 (2011) ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    Weinfurtner, S., Weinfurtner, S., De las Cuevas, G., Martin-Delgado, M.A., Briegel, H.J.: Reducing spacetime to binary information. arXiv:1210.5182
  10. 10.
    Datchev, K., Hezari, H.: Inverse Problems and Applications: Inside Out II. Math. Sci. Res. Inst. Publ. Series, vol. 60. Cambridge University Press, Cambridge (2012). Section 10 Google Scholar
  11. 11.
    Weyl, H.: Nachr. Ges. Wiss. Gött., Math.-Phys. Kl. 1, 110 (1911) Google Scholar
  12. 12.
    Kac, M.: Am. Math. Mon. 73, 1 (1966) CrossRefMATHGoogle Scholar
  13. 13.
    Srednicki, M.: Phys. Rev. Lett. 71, 666 (1993) ADSCrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Susskind, L., Lindesay, J.: An Introduction to Black Holes, Information and the String Theory Revolution: The Holographic Universe. World Scientific, Singapore (2005) Google Scholar
  15. 15.
    Rosenberg, S.: The Laplacian on a Riemannian Manifold. Cambridge University Press, Cambridge (1997) CrossRefMATHGoogle Scholar
  16. 16.
    Aasen, D., Bhamre, T., Kempf, A.: Phys. Rev. Lett. 110, 121301 (2013). arXiv:1212.5297 ADSCrossRefGoogle Scholar
  17. 17.
    Liddle, A.R., Lyth, D.H.: Cosmological Inflation and Large Scale Structure. Cambridge University Press, Cambridge (2000) CrossRefGoogle Scholar
  18. 18.
    Kempf, A., Martin, R.T.W., Chatwin-Davies, A.: J. Math. Phys. 54, 022301 (2013). arXiv:1210.0750 ADSCrossRefMathSciNetGoogle Scholar
  19. 19.
    Landi, G., Rovelli, C.: Phys. Rev. Lett. 78, 3051 (1997) ADSCrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Weinfurtner, S., de las Cuevas, G., Martin-Delgado, M.A., Briegel, H.J.: arXiv:1210.5182
  21. 21.
    Hawking, S.W.: Phys. Rev. D 18, 1747 (1978) ADSCrossRefGoogle Scholar
  22. 22.
    Gilkey, P.B.: J. Differ. Geom. 10, 601 (1975) MATHMathSciNetGoogle Scholar
  23. 23.
    Shannon, C.E.: The Mathematical Theory of Communication. University of Illinois Press, Chicago (1949) MATHGoogle Scholar
  24. 24.
    Beurling, A.: In: Carleson, L. (ed.) A. Beurling: Collected Works, vol. 2, pp. 341–365. Birkhauser, Boston (1989) Google Scholar
  25. 25.
    Kempf, A.: Phys. Rev. Lett. 85, 2873 (2000) ADSCrossRefGoogle Scholar
  26. 26.
    Garay, L.: Int. J. Mod. Phys. A 10, 145 (1995) ADSCrossRefGoogle Scholar
  27. 27.
    Hossenfelder, S.: Living Rev. Relativ. 16, 2 (2013) ADSCrossRefGoogle Scholar
  28. 28.
    Kempf, A.: J. Math. Phys. 35, 4483 (1994) ADSCrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Kempf, A.: Phys. Rev. Lett. 92, 221301 (2004) ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Dept. of Applied MathematicsUniversity of WaterlooWaterlooCanada
  2. 2.Centre for Quantum Computing Technology, Dept. of PhysicsUniversity of QueenslandSt. LuciaAustralia

Personalised recommendations