Advertisement

Foundations of Physics

, Volume 43, Issue 8, pp 1008–1038 | Cite as

Non-separability Does Not Relieve the Problem of Bell’s Theorem

  • Joe HensonEmail author
Article

Abstract

This paper addresses arguments that “separability” is an assumption of Bell’s theorem, and that abandoning this assumption in our interpretation of quantum mechanics (a position sometimes referred to as “holism”) will allow us to restore a satisfying locality principle. Separability here means that all events associated to the union of some set of disjoint regions are combinations of events associated to each region taken separately.

In this article, it is shown that: (a) localised events can be consistently defined without implying separability; (b) the definition of Bell’s locality condition does not rely on separability in any way; (c) the proof of Bell’s theorem does not use separability as an assumption. If, inspired by considerations of non-separability, the assumptions of Bell’s theorem are weakened, what remains no longer embodies the locality principle. Teller’s argument for “relational holism” and Howard’s arguments concerning separability are criticised in the light of these results. Howard’s claim that Einstein grounded his arguments on the incompleteness of QM with a separability assumption is also challenged. Instead, Einstein is better interpreted as referring merely to the existence of localised events. Finally, it is argued that Bell rejected the idea that separability is an assumption of his theorem.

Keywords

Non-locality Bell’s theorem Separability Holism 

Notes

Acknowledgements

The author would like to thank Michel Buck for pointing out a useful quote from Bell, Fay Dowker and Rafael Sorkin for many conversations about causality and relativity, and especially to Harvey Brown for pointing to previous work on separability such as that of Healey. Thanks are also due to Travis Norsen and Rob Spekkens for edifying discussions of an earlier version on the manuscript. This work was made possible through the support of a grant from the John Templeton Foundation.

References

  1. 1.
    Bell, J.: Speakable and Unspeakable in Quantum Mechanics, 2nd edn. Cambridge Univeristy Press, Cambridge (2004). Subsequent references to Bell’s papers will be made in-line with the year of publication and the page numbers from this book. The original publication details can be found therein zbMATHCrossRefGoogle Scholar
  2. 2.
    Redhead, M.: Incompleteness, Nonlocality and Realism. Oxford University Press, Oxford (1987) zbMATHGoogle Scholar
  3. 3.
    Cushing, J.T., McMullin, E. (eds.): Philosophical Consequences of Quantum Theory. Notre Dame Press, Notre Dame (1989). Subsequent references to papers in this collection will be made in-line with author’s name and the page numbers from this book Google Scholar
  4. 4.
    Maudlin, T.: In: Quantum Non-Locality and Relativity, Malden, Massachusetts (2002) CrossRefGoogle Scholar
  5. 5.
    Norsen, T.: Found. Phys. Lett. 19, 633 (2006). arXiv:quant-ph/0601205 MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Norsen, T.: Arxiv preprint, 19 (2007) Google Scholar
  7. 7.
    Norsen, T.: Found. Phys. 37, 311 (2007). arXiv:quant-ph/0607057 MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Norsen, T.: Found. Phys. 39, 273 (2009). arXiv:0808.2178 MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Butterfield, J.: Br. J. Philos. Sci. 43, 41 (1992). pss/687884 MathSciNetCrossRefGoogle Scholar
  10. 10.
    Timpson, C.G., Brown, H.R.: Entanglement and relativity. In: Lupacchini, R., Fano, V. (eds.) Understanding Physical Knowledge, University of Bologna, Bologna (2002) Google Scholar
  11. 11.
    Henson, J.: Causality, Bell’s theorem, and ontic definiteness. In preparation Google Scholar
  12. 12.
    Reichenbach, H.: The Direction of Time. University of California Press, Berkeley (1956), reissued 1991 Google Scholar
  13. 13.
    Jarrett, J.: Noûs 18, 569 (1984) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wessels, L.: Noûs 19, 481 (1985) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Maudlin, T.: Am. J. Phys. 78, 121 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    Howard, D.: Stud. Hist. Philos. Sci. 16, 171 (1985) MathSciNetCrossRefGoogle Scholar
  17. 17.
    Teller, P.: Br. J. Philos. Sci. 37, 71 (1986) MathSciNetGoogle Scholar
  18. 18.
    Healey, R.: The Philosophy of Quantum Mechanics. Cambridge Univeristy Press, Cambridge (1989) CrossRefGoogle Scholar
  19. 19.
    Healey, R.A.: J. Philos. 88, 393 (1991) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Healey, R.: Philos. Top. 20, 181 (1992) CrossRefGoogle Scholar
  21. 21.
    Healey, R.: Stud. Hist. Philos. Sci. 25, 337 (1994) CrossRefGoogle Scholar
  22. 22.
    Morganti, M.: Philos. Sci. 76, 1027 (2009) Google Scholar
  23. 23.
    Laudisa, F.: Br. J. Philos. Sci. 46, 309 (1995) MathSciNetCrossRefGoogle Scholar
  24. 24.
    Berkovitz, J.: Stud. Hist. Philos. Mod. Phys. 29, 183 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Winsberg, E., Fine, A.: J. Philos. 3C, 80–97 (2003) MathSciNetGoogle Scholar
  26. 26.
    Fogel, B.: Stud. Hist. Philos. Mod. Phys. 38, 920 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Healey, R.: Gauging What’s Real. Oxford University Press, New York (2007) zbMATHCrossRefGoogle Scholar
  28. 28.
    Butterfield, J.: Br. J. Philos. Sci. 57, 709 (2005) MathSciNetCrossRefGoogle Scholar
  29. 29.
    Spekkens, R.W.: Phys. Rev. A 75, 032110 (2007). arXiv:quant-ph/0401052 ADSCrossRefGoogle Scholar
  30. 30.
    Harrigan, N., Spekkens, R.W.: Found. Phys. 40, 125 (2010). arXiv:0706.2661 MathSciNetADSzbMATHCrossRefGoogle Scholar
  31. 31.
    Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Phys. Rev. A 86, 012103 (2012). arXiv:1111.5057 ADSCrossRefGoogle Scholar
  32. 32.
    Pusey, M.F., Barrett, J., Rudolph, T.: Nat. Phys. 8, 476 (2012). arXiv:1111.3328 CrossRefGoogle Scholar
  33. 33.
    Spekkens, R.: Why I am not a psi-ontologist. Seminar given at Perimeter Institute, Waterloo ON, Canada (2012). http://pirsa.org/12050021/
  34. 34.
    Spekkens, R.: FQXi essay contest. arXiv:1209.0023 (2012)
  35. 35.
    Ghirardi, G., Grassi, R.: Stud. Hist. Philos. Sci. 25, 397 (1994) MathSciNetCrossRefGoogle Scholar
  36. 36.
    Henson, J.: Stud. Hist. Philos. Mod. Phys. 36, 519 (2005). quant-ph/0410051 MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Uffink, J.: Philos. Sci. 66, 525 (1999) MathSciNetCrossRefGoogle Scholar
  38. 38.
    Rédei, M., San Pedro, I.: Stud. Hist. Philos. Mod. Phys. 43, 84 (2012). arXiv:1204.4288 CrossRefGoogle Scholar
  39. 39.
    Henson, J.: Stud. Hist. Philos. Mod. Phys. 44, 17 (2013). arXiv:1210.1463 MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    Seevinck, M., Uffink, J.: Not throwing out the baby with the bathwater: Bell’s condition of local causality mathematically ‘sharp and clean’. In: Dieks, D., Gonzalez, W.J., Hartmann, S., Uebel, T., Weber, M. (eds.) Explanation, Prediction, and Confirmation, vol. 2, pp. 425–450. Springer, Netherlands (2011). arXiv:1007.3724 CrossRefGoogle Scholar
  41. 41.
    Clauser, J., Horne, M., Shimony, A., Holt, R.: Phys. Rev. Lett. 26, 880 (1969) ADSCrossRefGoogle Scholar
  42. 42.
    Healey, R.: Br. J. Philos. Sci. 63, 729 (2012). arXiv:1008.3896 MathSciNetCrossRefGoogle Scholar
  43. 43.
    Jones, M.R.: Locality and holism: the metaphysics of quantum theory. PhD thesis, Stanford University, Stanford, CA (1991) Google Scholar
  44. 44.
    Jones, M., Clifton, R.K.: Against experimental metaphysics. In: French, P., Wehling, T., Wettstein, H. (eds.) Midwest Studies in Philosophy, vol. 18, pp. 295–316. University of Notre Dame Press, Notre Dame (2000) Google Scholar
  45. 45.
    Einstein, A.: Dialectica 2, 320 (1948) zbMATHCrossRefGoogle Scholar
  46. 46.
    Smerlak, M., Rovelli, C.: Found. Phys. 37, 427 (2007). quant-ph/0604064 MathSciNetADSzbMATHCrossRefGoogle Scholar
  47. 47.
    Fuchs, C.A.: arXiv:1003.5209 (2010)
  48. 48.
    Hofer-Szabó, G., Rédei, M., Szabó, L.: Br. J. Philos. Sci. 50, 377 (1999) zbMATHCrossRefGoogle Scholar
  49. 49.
    Hofer-Szabó, G., Rédei, M., Szabó, L.: Philos. Sci. 69, 623 (2002) MathSciNetCrossRefGoogle Scholar
  50. 50.
    Butterfield, J.: Br. J. Philos. Sci. 58, 805 (2007). arXiv:0708.2192 MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Reichenbach, H.: The Philosophic Foundations of Quantum Mechanics. University of California Press, Berkeley (1944), reprinted by Dover 1998 Google Scholar
  52. 52.
    Penrose, R., Percival, I.: Proc. Phys. Soc. 79, 605 (1962) MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Imperial College Blackett LaboratoryLondonUK

Personalised recommendations