Advertisement

Foundations of Physics

, Volume 43, Issue 8, pp 948–968 | Cite as

Type-Decomposition of a Synaptic Algebra

  • David J. FoulisEmail author
  • Sylvia Pulmannová
Article

Abstract

A synaptic algebra is a generalization of the self-adjoint part of a von Neumann algebra. In this article we extend to synaptic algebras the type-I/II/III decomposition of von Neumann algebras, AW-algebras, and JW-algebras.

Keywords

Synaptic algebra von Neumann algebra JW-algebra Projection lattice Type-determining set Type decomposition Type I/II/III 

References

  1. 1.
    Alfsen, E.M.: Compact Convex Sets and Boundary Integrals. Springer, New York (1971). ISBN 0-387-05090-6 zbMATHCrossRefGoogle Scholar
  2. 2.
    Beran, L.: Orthomodular Lattices. An Algebraic Approach. Mathematics and Its Applications, vol. 18. Reidel, Dordrecht (1985) CrossRefGoogle Scholar
  3. 3.
    Chevalier, G.: Around the relative center property in orthomodular lattices. Proc. Am. Math. Soc. 112, 935–948 (1991) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Mathematics and Its Applications, vol. 516. Kluwer Academic, Dordrecht (2000) zbMATHCrossRefGoogle Scholar
  5. 5.
    Foulis, D.J.: A note on orthomodular lattices. Port. Math. 21, 65–72 (1962) MathSciNetzbMATHGoogle Scholar
  6. 6.
    Foulis, D.J.: Synaptic algebras. Math. Slovaca 60(5), 631–654 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Foulis, D.J., Bennett, M.K.: Effect algebras and unsharp quantum logics. Found. Phys. 24(10), 1331–1352 (1994) MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Foulis, D.J., Pulmannová, S.: Generalized Hermitian algebras. Int. J. Theor. Phys. 48(5), 1320–1333 (2009) zbMATHCrossRefGoogle Scholar
  9. 9.
    Foulis, D.J., Pulmannová, S.: Projections in synaptic algebras. Order 27(2), 235–257 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Foulis, D.J., Pulmannová, S.: Centrally orthocomplete effect algebras. Algebra Univers. 64, 283–307 (2010). doi: 10.007/s00012-010-0100-5 zbMATHCrossRefGoogle Scholar
  11. 11.
    Foulis, D.J., Pulmannová, S.: Type-decomposition of an effect algebra. Found. Phys. 40, 1543–1565 (2010). doi: 10.1007/s10701-009-9344-3 MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Foulis, D.J., Pulmannová, S.: Regular elements in generalized Hermitian algebras. Math. Slovaca 61(2), 155–172 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Foulis, D.J., Pulmannová, S.: Hull mappings and dimension effect algebras. Math. Slovaca 61(3), 1–38 (2011) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Foulis, D.J., Pulmannová, S.: Symmetries in synaptic algebras. arXiv:1304.4378
  15. 15.
    Gudder, S., Pulmannová, S., Bugajski, S., Beltrametti, E.: Convex and linear effect algebras. Rep. Math. Phys. 44(3), 359–379 (1999) MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    Haag, R.: Local Quantum Physics, Fields, Particles, Algebras. Springer, Berlin (1992) zbMATHCrossRefGoogle Scholar
  17. 17.
    Holland, S.S. Jr.: Distributivity and perspectivity in orthomodular lattices. Trans. Am. Math. Soc. 112, 330–343 (1964) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Holland, S.S. Jr.: An m-orthocomplete orthomodular lattice is m-complete. Proc. Am. Math. Soc. 24, 716–718 (1970) MathSciNetzbMATHGoogle Scholar
  19. 19.
    Jenča, G., Pulmannová, S.: Orthocomplete effect algebras. Proc. Am. Math. Soc. 131, 2663–2671 (2003) zbMATHCrossRefGoogle Scholar
  20. 20.
    Kalmbach, G.: Orthomodular Lattices. Academic Press, London (1983) zbMATHGoogle Scholar
  21. 21.
    Kaplansky, I.: Any orthocomplemented complete modular lattice is a continuous geometry. Ann. Math. 61, 524–541 (1955) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    McCrimmon, K.: A Taste of Jordan Algebras. Universitext. Springer, New York (2004). ISBN 0-387-95447-3 zbMATHGoogle Scholar
  23. 23.
    Pulmannová, S.: A note on ideals in synaptic algebras. Math. Slovaca 62(6), 1091–1104 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Rédei, M.: Why John von Neumann did not like the Hilbert space formalism of quantum mechanics (and what he liked instead). Stud. Hist. Philos. Mod. Phys. 27(4), 493–510 (1996) zbMATHCrossRefGoogle Scholar
  25. 25.
    Riečanová, Z.: Subdirect decompositions of lattice effect algebras. Int. J. Theor. Phys. 42(7), 1425–1433 (2003) zbMATHCrossRefGoogle Scholar
  26. 26.
    Topping, D.M.: Jordan Algebras of Self-Adjoint Operators. A.M.S. Memoir, vol. 53. AMS, Providence (1965) Google Scholar
  27. 27.
    von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Heidelberg (1932) zbMATHGoogle Scholar
  28. 28.
    von Neumann, J.: Continuous Geometry. Princeton Univ. Press, Princeton (1960) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of MassachusettsAmherstUSA
  2. 2.Mathematical InstituteSlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations