Advertisement

Foundations of Physics

, Volume 43, Issue 2, pp 201–209 | Cite as

Electrodynamics and Radiation Reaction

  • Richard T. Hammond
Article

Abstract

The self force of electrodynamics is derived from a scalar field. The resulting equation of motion is free of all of the problems that plague the Lorentz Abraham Dirac equation. The age-old problem of a particle in a constant field is solved and the solution has intuitive appeal.

Keywords

Radiation reaction Self force 

Notes

Acknowledgements

I would like to thank the referee for many suggestions and apposite remarks.

References

  1. 1.
    Hammond, R.T.: Electron. J. Theor. Phys. 7, 221 (2010) Google Scholar
  2. 2.
    Abraham, M.: Theorie der Elektrizitat, vol. II. Teubner, Leipzig (1905) Google Scholar
  3. 3.
    Lorentz, H.A.: The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat. Teubner, Stechert, Leipzig, New York (1909) Google Scholar
  4. 4.
    Dirac, P.A.M.: Proc. R. Soc. A, Math. Phys. Eng. Sci. 167, 148 (1938) ADSCrossRefGoogle Scholar
  5. 5.
    Jackson, J.D.: Classical Electrodynamics, 2nd edn. Wiley, New York (1975). The FO equation appears in the third edition MATHGoogle Scholar
  6. 6.
    Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Pergamon Press, Addison-Wesley, Reading (1971), equation 76.1. This appeared in the first edition in 1951 Google Scholar
  7. 7.
    Hammond, R.T.: Electron. J. Theor. Phys. 5, 17 (2008) MATHGoogle Scholar
  8. 8.
    Hammond, R.T.: Nuovo Cimento B 123, 567 (2008) ADSGoogle Scholar
  9. 9.
    Yanovsky, V., et al.: Opt. Express 16, 2109 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    Hammond, R.T.: Phys. Rev. A 81, 062104 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    Ford, G.W., O’Connell, R.F.: Phys. Lett. A 157, 217 (1991) ADSCrossRefGoogle Scholar
  12. 12.
    Ford, G.W., O’Connell, R.F.: Phys. Lett. A 174, 182 (1993) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Ford, G.W., O’Connell, R.F.: Phys. Rev. A 44, 6386 (1991) ADSCrossRefGoogle Scholar
  14. 14.
    Cohn, J.: Am. J. Phys. 46, 225 (1976) ADSCrossRefGoogle Scholar
  15. 15.
    Troha, A.L., Hartemann, F.V.: Phys. Rev. E 65, 028502 (2002), see for an introduction and the references ADSCrossRefGoogle Scholar
  16. 16.
    Rothman, T., Boughn, S.: Am. J. Phys. 77, 122 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    Fradkin, D.M.: Phys. Rev. D 22, 1018 (1970) MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Louisell, W.H.: Quantum Statistical Properties of Radiation, Sect. 5.6. Wiley, New York (1973) Google Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2012

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Army Research OfficeResearch Triangle ParkUSA

Personalised recommendations