Skip to main content
Log in

On Superluminal Particles and the Extended Relativity Theories

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Superluminal particles are studied within the framework of the Extended Relativity theory in Clifford spaces (C-spaces). In the simplest scenario, it is found that it is the contribution of the Clifford scalar component π of the poly-vector-valued momentum which is responsible for the superluminal behavior in ordinary spacetime due to the fact that the effective mass \(\mathcal{M} = \sqrt{ M^{2} - \pi^{2} }\) is imaginary (tachyonic). However, from the point of view of C-space, there is no superluminal (tachyonic) behavior because the true physical mass still obeys M 2>0. Therefore, there are no violations of the Clifford-extended Lorentz invariance and the extended Relativity principle in C-spaces. It is also explained why the charged muons (leptons) are subluminal while its chargeless neutrinos may admit superluminal propagation. A Born’s Reciprocal Relativity theory in Phase Spaces leads to modified dispersion relations involving both coordinates and momenta, and whose truncations furnish Lorentz-violating dispersion relations which appear in Finsler Geometry, rainbow-metrics models and Double (deformed) Special Relativity. These models also admit superluminal particles. A numerical analysis based on the recent OPERA experimental findings on alleged superluminal muon neutrinos is made. For the average muon neutrino energy of 17 GeV, we find a value for the magnitude \(|\mathcal{M } | = 119.7\mbox{~MeV}\) that, coincidentally, is close to the mass of the muon m μ =105.7 MeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. The choice e=0,M≠0 is more appropriate for the scalar massive mesons.

References

  1. Castro, C., Pavsic, M.: Prog. Phys. 1, 31 (2005)

    MathSciNet  Google Scholar 

  2. Castro, C., Pavsic, M.: Phys. Lett. B 559, 74 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Castro, C., Pavsic, M.: Int. J. Theor. Phys. 42, 1693 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Castro, C.: Found. Phys. 35(6), 971 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Castro, C.: Prog. Phys. 1, 20 (2005)

    MathSciNet  Google Scholar 

  6. Ansoldi, S., Aurilia, A., Spallucci, E.: Phys. Rev. D 56(4), 2532 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  7. Ansoldi, S., Aurilia, A., Castro, C., Spallucci, E.: Phys. Rev. D 64, 026003 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  8. Pezzaglia, W.: Dimensionally democratic calculus and principles of polydimensional physics. arXiv:gr-qc/9912025

  9. Pezzaglia, W.: Physical applications of a generalized Clifford calculus (Papapetrou equations and metamorphic curvature). arXiv:gr-qc/9710027

  10. Pezzaglia, W.: Polydimensional relativity, a classical generalization of the automorphism invariance principle. arXiv:gr-qc/9608052

  11. Pavsic, M.: Found. Phys. 33, 1277 (2003)

    Article  MathSciNet  Google Scholar 

  12. Pavsic, M.: The Landscape of Theoretical Physics: A Global View, from Point Particles to the Brane World and Beyond, in Search of a Unifying Principle. Fundamental Theories of Physics, vol. 19. Kluwer Academic, Dordrecht (2001)

    MATH  Google Scholar 

  13. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. Reidel, Dordrecht (1984)

    Book  MATH  Google Scholar 

  14. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  15. Adam, T., et al.: Measurement of the neutrino velocity with the OPERA detector in the CNGS beam. arXiv:1109.4897

  16. Recami, E.: Riv. Nuovo Cimento 9(6), 1 (1986)

    Article  MathSciNet  Google Scholar 

  17. Recami, E., Mignani, R.: Riv. Nuovo Cimento 4, 209 (1974). (Erratum 398)

    Article  Google Scholar 

  18. E. Recami’s website: www.unibg.it/recami

  19. Giannetto, E., Maccarrone, G., Migani, R., Recami, E.: Phys. Lett. B 178, 115 (1986)

    Article  ADS  Google Scholar 

  20. Recami, E.: Found. Phys. 31(7), 1119 (2001)

    Article  MathSciNet  Google Scholar 

  21. Recami, E.: Multi-verses, micro-universes and elementary particles (hadrons). arXiv:physics/0505149

  22. Rosen, N.: Found. Phys. 10, 673 (1980)

    Article  ADS  Google Scholar 

  23. Isham, C., Salam, A., Strathdee, J.: Phys. Rev. D 3, 867 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  24. Ne’eman, Y.: Hadron. J. 21, 255 (1998)

    MathSciNet  MATH  Google Scholar 

  25. Salesi, G.: Int. J. Mod. Phys. A 28, 5103 (1997)

    Article  ADS  Google Scholar 

  26. Faria-Rosa, M.A., Recami, E., Rodrigues, W.A. Jr.: Phys. Lett. B 173, 233 (1986). Phys. Lett. B 188, 511 (1987) (Erratum)

    Article  MathSciNet  ADS  Google Scholar 

  27. Rodrigues, W.A. Jr., Recami, E., Maia, A. Jr., Rosa, M.A.F.: Phys. Lett. B 220, 195 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  28. Maia, A. Jr., Recami, E., Rodrigues, W.A. Jr., Faria-Rosa, M.A.: J. Math. Phys. 31, 502 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Maia, A. Jr., Recami, E., Rodrigues, W.A. Jr., Faria-Rosa, M.A.: In: Recami, E. (ed.) Tachyons, Monopoles, and Related Topics. North-Holland, Amsterdam (1978), and references therein

    Google Scholar 

  30. Recami, E., Salesi, G.: Phys. Rev. A 57, 98 (1998)

    Article  ADS  Google Scholar 

  31. Recami, E., Salesi, G.: Adv. Appl. Clifford Algebras 6, 27 (1996)

    MathSciNet  MATH  Google Scholar 

  32. Chodos, A., Hauser, A., Kostelecky, V.: Phys. Lett. B 150 (1985)

  33. Jeong, E.J.: Neutrinos must be tachyons. arXiv:hep-ph/9704311

  34. Pitkanen, M.: Topological geometro-dynamics. http://tgd.wippiespace.com/public_html/index.html

  35. Rodrigues, W. Jr., Maiorino, J.: Random Oper. Stoch. Equ. 4(4), 355 (1996). arXiv:physics/9710030

    Article  MathSciNet  Google Scholar 

  36. Rodrigues, W.A. Jr., Lu, J.-Y.: Found. Phys. 27, 435–508 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  37. Rodrigues, W.A. Jr., Vaz, J. Jr.: Adv. Appl. Clifford Algebras 7(S), 453 (1997)

    Google Scholar 

  38. de Oliveira, E.C., Rodrigues, W.A. Jr.: Phys. Lett. A 296(6), 367 (2001)

    Article  Google Scholar 

  39. Santilli, R.M.: Chin. J. Syst. Eng. Electron. 6, 157 (1995)

    Google Scholar 

  40. Santilli, R.M.: Elements of Hadronic Mechanics, vols. I and II, 2nd edn. Naukora Dumka, Ukraine Acad. Sci., Kiev (1995)

    Google Scholar 

  41. Kehagias, A.: Relativistic superluminal neutrinos. arXiv:1109.6312

  42. Alexandre, J., Ellis, J., Mavromatos, N.: On the possibility of superluminal neutrino propagation. arXiv:1109.6296

  43. Pavsic, M.: Extra time like dimensions, superluminal motion, and dark matter. arXiv:1110.4754

  44. Li, T., Nanopoulos, D.: Background dependent Lorentz violation from string theory. arXiv:1110.0451

  45. Lust, D., Petropoulos, M.: Comment on superluminality in general relativity. arXiv:1110.0813

  46. Pfeifer, C., Wohlfarth, M.: Beyond the speed of light on Finsler spacetimes. arXiv:1109.6005

  47. Li, M., Wang, T.: Mass-dependent Lorentz violation and neutrino velocity. arXiv:1109.5924

  48. Tamburini, F., Lavedier, M.: Apparent violation with superluminal Majorana neutrinos at OPERA. arXiv:1109.5445

  49. Motl, L.: The reference frame. http://motls.blogspot.com/

  50. Contaldi, C.: The OPERA neutrino velocity and the synchronization of clocks. arXiv:1109.6160

  51. Haustein, M.: Effects of the theory of relativity in the GPS (2009). http://osg.informatik.tu-chemnitz.de/lehre/old/ws0809/sem/online/GPS.pdf

  52. Gonzalez, J.F.: A possible explanation of the OPERA experiment based on known well established physics (to appear)

  53. Ashby, N.: Relativity in the global positioning system. Living Rev. Relativ. 6, 1 (2003). Available online, http://www.livingreviews.org/Articles/Volume6/2003-1ashby/

    ADS  Google Scholar 

  54. Thompson, J.: Philos. Mag. 11, 227 (1881)

    Google Scholar 

  55. Wanas, M.: Electromagnetic origin of mass. ICTP Trieste preprint IC/87/397

  56. Bulyzhenkov, I.: Electromagnetic origin of mass due to folded pseudo-coordinates. arXiv:0810.2062

  57. Born, M., Infeld, L.: Proc. R. Soc. London 144(852), 425 (1934)

    Article  ADS  Google Scholar 

  58. Haeffner, E.: The physical origin of mass and charge. arXiv:physics/0010050

  59. Born, M.: Proc. R. Soc. A 165, 291 (1938)

    Article  ADS  Google Scholar 

  60. Born, M.: Rev. Mod. Phys. 21, 463 (1949)

    Article  ADS  MATH  Google Scholar 

  61. Caianiello, E.: Is there a maximal acceleration? Lett. Nuovo Cimento 32, 65 (1981)

    Article  MathSciNet  Google Scholar 

  62. Low, S.: J. Phys. A, Math. Gen. 35, 5711 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  63. Low, S.: Nuovo Cimento B 108, 841 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  64. Low, S.: Found. Phys. 36, 1036 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  65. Low, S.: J. Math. Phys. 38, 2197 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  66. Castro, C.: Int. J. Mod. Phys. A 26(21), 3653 (2011)

    Article  ADS  Google Scholar 

  67. Govaerts, J., Jarvis, P., Morgan, S., Low, S.: Worldline quantization of a reciprocally invariant system. arXiv:0706.3736

  68. Vacaru, S.: Superluminal effects for Finsler branes as a way to preserve the paradigm of relativity theories. arXiv:1110.0675

  69. Vacaru, S., Stavrinos, P., Gaburov, E., Gonta, D.: Clifford and Riemann-Finsler Structures in Geometric Mechanics and Gravity. Balkan Press (2006)

    MATH  Google Scholar 

  70. Miron, R., Hrimiuc, D., Shimada, H., Sabau, S.: The Geometry of Hamilton and Lagrange Spaces. Kluwer Academic, Dordrecht (2001)

    MATH  Google Scholar 

  71. Castro, C.: Gravity in curved phase-spaces and two-times physics. Int. J. Mod. Phys. A (2011, in press)

  72. Brandt, H.: Contemp. Math. 196, 273 (1996)

    Article  Google Scholar 

  73. Brandt, H.: Chaos Solitons Fractals 10(2–3), 267 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  74. Girelli, F., Liberati, S., Sindoni, L.: Planck-scale modified dispersion relations and Finsler geometry. Phys. Rev. D 75, 064015 (2007). arXiv:gr-qc/0611024

    Article  MathSciNet  ADS  Google Scholar 

  75. Magueijo, J., Smolin, L.: Gravity’s rainbow. Class. Quantum Gravity 21, 1725–1736 (2004). arXiv:gr-qc/0305055

    Article  MathSciNet  ADS  MATH  Google Scholar 

  76. Garattini, R.: Particle propagation and effective spacetime in Gravity’s Rainbow. arXiv:1109.6563

  77. Ellis, J.R., Mavromatos, N.E., Nanopoulos, D.V.: D-brane recoil mislays information. Int. J. Mod. Phys. A 13, 1059 (1998). arXiv:hep-th/9609238

    Article  MathSciNet  ADS  MATH  Google Scholar 

  78. Ellis, J.R., Mavromatos, N.E., Nanopoulos, D.V.: Quantum gravitational diffusion and stochastic fluctuations in the velocity of light. Gen. Relativ. Gravit. 32, 127–144 (2000). arXiv:gr-qc/9904068

    Article  MathSciNet  ADS  MATH  Google Scholar 

  79. Amelino-Camelia, G.: Int. J. Mod. Phys. D 11, 35 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  80. Amelino-Camelia, G.: Int. J. Mod. Phys. D 11, 1643 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  81. Lukierski, J., Nowicki, A., Ruegg, H., Tolstoy, V.: Phys. Lett. B 264, 331 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  82. Amelino-Camelia, G., Gubitosi, G., Loret, N., Mercati, F., Rosati, G., Loret, N.: OPERA-reassessing data on the energy dependence of the speed of neutrinos. arXiv:1109.5172

  83. Cohen, A.G., Glashow, S.L.: New constraints on neutrino velocities. arXiv:1109.6562

  84. Bi, X., Yin, P., Yu, Z., Yuan, Q.: Constraints and tests of the OPERA superluminal neutrinos. arXiv:1109.6667

  85. Chodos, A.: Phys. Today 64(12), 8 (2011)

    Article  ADS  Google Scholar 

  86. Antonello, M., et al. (ICARUS Collaboration): arXiv:1110.3763

  87. Gonzalez-Mestres, L.: Astrophysical consequences of the OPERA superluminal neutrino. arXiv:1109.6630

Download references

Acknowledgements

We thank M. Bowers for her assistance, to Sergiu Vacaru for discussions and to the referee for offering many suggestions to improve the manuscript and pointing out many important references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Castro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro, C. On Superluminal Particles and the Extended Relativity Theories. Found Phys 42, 1135–1152 (2012). https://doi.org/10.1007/s10701-012-9659-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-012-9659-3

Keywords

Navigation