Skip to main content
Log in

Being, Becoming and the Undivided Universe: A Dialogue Between Relational Blockworld and the Implicate Order Concerning the Unification of Relativity and Quantum Theory

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In this paper two different approaches to unification will be compared, Relational Blockworld (RBW) and Hiley’s implicate order. Both approaches are monistic in that they attempt to derive matter and spacetime geometry ‘at once’ in an interdependent and background independent fashion from something underneath both quantum theory and relativity. Hiley’s monism resides in the implicate order via Clifford algebras and is based on process as fundamental while RBW’s monism resides in spacetimematter via path integrals over graphs whereby space, time and matter are co-constructed per a global constraint equation. RBW’s monism therefore resides in being (relational blockworld) while that of Hiley’s resides in becoming (elementary processes). Regarding the derivation of quantum theory and relativity, the promises and pitfalls of both approaches will be elaborated. Finally, special attention will be paid as to how Hiley’s process account might avoid the blockworld implications of relativity and the frozen time problem of canonical quantum gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Interestingly, in direct correspondence, Hiley noted that he and Bohm had considered Regge calculus, but found it emphasized the ‘structure’ too much and lost the notion of ‘process’. By turning to the notion of an ‘algebra’, Hiley found he could keep the structure aspect, but emphasize more the process.

  2. In a graphical representation of QFT, part of J represents field disturbances emanating from a source location (Source) and the other part represents field disturbances incident on a source location (sink).

  3. Hereafter, all reference to “experiments” will be to “quantum experiments.”

  4. In its Euclidean form, which is the form we will use, Z is a partition function.

  5. This assumes the number of degenerate eigenvalues always equals the dimensionality of the subspace spanned by their eigenvectors.

  6. Strictly speaking, the stress-energy tensor is associated with graphical links, not nodes. Our association of mass with nodes is merely conceptual.

References

  1. Melamed, Y., Lin, M.: Principle of sufficient reason. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2011) (Summer 2011 Edition). http://plato.stanford.edu/archives/sum2011/entries/sufficient-reason/

    Google Scholar 

  2. Savitt, S.: Time in the special theory of relativity. In: Callender, C. (ed.) The Oxford Handbook of Philosophy of Time, pp. 546–570. Oxford University Press, Oxford (2011)

    Google Scholar 

  3. Peterson, D., Silberstein, M.: In defense of eternalism: the relativity of simultaneity and block world. In: Petkov, V. (ed.) Space, Time, and Spacetime—Physical and Philosophical Implications of Minkowski’s Unification of Space and Time, pp. 209–238. Springer, New York (2010)

    Chapter  Google Scholar 

  4. Geroch, R.: General Relativity from A to B, pp. 20–21. University of Chicago Press, Chicago (1978)

    Google Scholar 

  5. Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems, p. 106. Princeton University Press, Princeton (1992)

    MATH  Google Scholar 

  6. Kiefer, C.: Time in quantum gravity. In: Callender, C. (ed.) The Oxford Handbook of Philosophy of Time, p. 667. Oxford University Press, Oxford (2011)

    Google Scholar 

  7. Kiefer, C.: Time in quantum gravity. In: Callender, C. (ed.) The Oxford Handbook of Philosophy of Time, pp. 663–678. Oxford University Press, Oxford (2011)

    Google Scholar 

  8. Smolin, L.: The Problem of Time in Gravity and Cosmology, Lecture 1 (2008). http://pirsa.org/pdf/files/dd4b88c3-7acd-4ea8-91fc-9302bc248e38.pdf

  9. Bohm, D., Hiley, B.: The Undivided Universe: an Ontological Interpretation of Quantum Theory. Routledge, London (1993)

    Google Scholar 

  10. Schaffer, J.: Monism: The priority of the whole. Philos. Rev. 119, 31–76 (2010)

    Article  Google Scholar 

  11. Price, H.: The flow of time. In: Callender, C. (ed.) The Oxford Handbook of Philosophy of Time, pp. 276–311. Oxford University Press, Oxford (2011)

    Google Scholar 

  12. Kaku, M.: Quantum Field Theory, p. 62. Oxford University Press, Oxford (1993)

    Google Scholar 

  13. Kiefer: (2011), p. 666

  14. Hiley, B., Callaghan, R.: Clifford algebras and the Dirac-Bohm quantum Hamilton-Jacobi equation (2011). doi:10.1007/s10701-011-9558-z

  15. Hiley, Callaghan: (2011), pp. 2–3

  16. Stuckey, W.M., Silberstein, M., Cifone, M.: Reconciling spacetime and the quantum: Relational Blockworld and the quantum liar paradox. Found. Phys. 38(4), 348–383 (2008). arXiv:quant-ph/0510090

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Silberstein, M., Stuckey, W.M., Cifone, M.: Why quantum mechanics favors adynamical and acausal interpretations such as Relational Blockworld over backwardly causal and time-symmetric rivals. Stud. Hist. Philos. Mod. Phys. 39(4), 736–751 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables, I. Phys. Rev. 85, 166–179 (1952)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Bohm, D., Hiley, B.: An ontological basis for quantum theory: I—non-relativistic particle systems. Phys. Rep. 144, 323–348 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  20. Stuckey, W.M., McDevitt, T., Silberstein, M.: Gauge Invariance from a graphical self-consistency criterion (2011). arXiv:1106.3339 [quant-ph]

  21. Hiley, B.: Process, distinction, groupoids and Clifford algebras: an alternative view of the quantum formalism. Unpublished manuscript (2008)

  22. Hiley, B., Callaghan, R.: The Clifford algebra approach to quantum mechanics A: The Schrödinger and Pauli particles. Unpublished manuscript (2009)

  23. Hiley, B., Callaghan, R.: The Clifford algebra approach to quantum mechanics B: The Dirac particle and its relation to the Bohm approach. Unpublished manuscript (2009)

  24. Hiley, Callaghan: (2009A), p. 2

  25. Hiley, Callaghan: (2009B), section 4.3

  26. Goldstein, S.: Bohmian mechanics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2009). Spring 2009 Edition, http://plato.stanford.edu/archives/spr2009/entries/qm-bohm/

    Google Scholar 

  27. Kaku: (1993), p. 384

  28. Kaku: (1993), p. 402

  29. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation, p. 1166. Freeman, San Francisco (1973)

    Google Scholar 

  30. Rovelli, C.: ‘Localization’ in quantum field theory: how much of QFT is compatible with what we know about space-time? In: Cao, T. (ed.) Conceptual Foundations of Quantum Field Theory, pp. 207–232. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  31. Hiley, Callaghan: (2009), p. 8

  32. Hiley: (2008), p. 39

  33. Personal communication (2011)

  34. Hiley, B.: Towards a dynamics of moments: the role of algebraic deformation and inequivalent vacuum states. In: Bowden, K.G. (ed.) Correlations. Proceedings ANPA 23, pp. 104–134 (2001), p. 106

  35. Hiley, Callaghan: (2009B), p. 2

  36. Hiley, Callaghan: (2011), p. 2

  37. Hiley, Callaghan: (2011), p. 9

  38. Hiley, Callaghan: (2009B), p. 18

  39. Hiley, Callaghan: (2009A), p. 10

  40. Hiley, Callaghan: (2009B), section 2

  41. Hiley, Callaghan: (2009B), section 4.4

  42. Wallace, D.: In defense of naiveté: The conceptual status of Lagrangian quantum field theory. Synthese 151, 33–80 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wallace: (2006), p. 45

  44. Misner et al.: (1973), p. 364

  45. Healey, R.: Gauging What’s Real: The Conceptual Foundations of Gauge Theories, p. 141. Oxford University Press, Oxford (2007)

    Book  MATH  Google Scholar 

  46. Feynman, R.P.: The development of the space-time view of quantum electrodynamics. In: Ekspong, G. (ed.) Physics: Nobel Lectures 1963–1970, pp. 155–178. World Scientific, Singapore (1988)

    Google Scholar 

  47. Zee, A.: Quantum Field Theory in a Nutshell. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  48. Zee: (2003), p. 22

  49. Feinberg, G., Friedberg, R., Lee, T.D., Ren, H.C.: Lattice gravity near the continuum limit. Nucl. Phys. 245, 343–368 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  50. Loll, R.: Discrete approaches to quantum gravity in four dimensions. www.livingreviews.org/Articles/Volume1/1998-13loll, Max-Planck-Institute for Gravitational Physics Albert Einstein Institute, Potsdam (15 Dec 1998)

  51. Ambjorn, J., Jurkiewicz, J., Loll, J.: Quantum gravity as sum over spacetimes (2009). arXiv:0906.3947

  52. Konopka, T., Markopoulou, F., Smolin, L.: Quantum graphity. arXiv:hep-th/0611197 (2006)

  53. Konopka, T., Markopoulou, F., Severini, S.: Quantum graphity: a model of emergent locality (2008). arXiv:0801.0861 [hep-th], doi:10.1103/PhysRevD.77.104029

  54. Sorkin, R.D.: Causal Sets: Discrete Gravity (Notes for the Valdivia Summer School) (2003). arXiv:gr-qc/0309009

  55. Bahr, B., Bianca Dittrich, B.: Regge calculus from a new angle (2009). arXiv:0907.4325

  56. Hamber, H.W., Williams, R.: Nonlocal effective gravitational field equations and the running of Newton’s G (2005). arXiv:hep-th/0507017

  57. Misner et al.: (1973), p. 369

  58. Wise, D.K.: p-Form electromagnetism on discrete spacetimes. Class. Quantum Gravity 23, 5129–5176 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. Zee: (2003), p. 167

  60. Lisi, A.: Quantum mechanics from a universal action reservoir (2006). arXiv:physics/0605068

  61. Zee: (2003), p. 12

  62. Zee: (2003), p. 5

  63. Sorkin, R.: The electromagnetic field on a simplicial net. J. Math. Phys. 16, 2432–2440 (1975). section IV.C

    Article  MathSciNet  ADS  Google Scholar 

  64. Stuckey, W.M., McDevitt, T., Silberstein, M.: Modified Regge calculus as an explanation of dark energy. Class. Quantum Gravity 29, 055015 (2012). doi:10.1088/0264-9381/29/5/055015, arXiv:1110.3973 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  65. Amanullah, R., Lidman, C., Rubin, D., Aldering, G., Astier, P., Barbary, K., Burns, M.S., Conley, A., Dawson, K.S., Deustua, S.E., Doi, M., Fabbro, S., Faccioli, L., Fakhouri, H.K., Folatelli, G. Fruchter, A.S., Furusawa, H., Garavini, G., Goldhaber, G., Goobar, A., Groom, D.E., Hook, I., Howell, D.A., Kashikawa, N., Kim, A.G., Knop, R.A., Kowalski, M., Linder, E., Meyers, J., Morokuma, T., Nobili, S., Nordin, J., Nugent, P.E., Ostman, L., Pain, R., Panagia, N., Perlmutter, S., Raux, J., Ruiz-Lapuente, P., Spadafora, A.L., Strovink, M., Suzuki, N., Wang, L., Wood-Vasey, W.M., Yasuda, N. (The Supernova Cosmology Project): Spectra and light curves of six type Ia supernovae at 0.511<z<1.12 and the Union2 compilation. Astrophys. J. 716, 712–738 (2010). arXiv:1004.1711v1 [astro-ph]

    Article  ADS  Google Scholar 

  66. Komatsu, E., Smith, K.M., Dunkley, J., Bennett, C.L., Gold, B., Hinshaw, G., Jarosik, N., Larson, D., Nolta, M.R., Page, L., Spergel, D.N., Halpern, N., Hill, R.S., Kogut, A., Limon, M., Meyer, S.S., Odegard, N., Tucker, G.S., Weiland, J.L., Wollack, E., Wright, E.L.: Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation. arXiv:1001.4538v3

  67. Riess, A.G., Macri, L., Casertano, S., Lampeitl, H., Ferguson, H.C., Filippenko, A.V., Jha, S.W., Li, W., Chornock, R.: A 3% solution: determination of the Hubble constant with the Hubble space telescope and wide field camera 3. Astrophys. J. 730, 119 (2011)

    Article  ADS  Google Scholar 

  68. Beauregard, C.: Time in relativity theory: arguments for a philosophy of being. In: Fraser, J.T. (ed.) The Voices of Time, 2nd edn., p. 430. University of Massachusetts Press, Amherst (1981)

    Google Scholar 

  69. Earman, J.: Tracking down gauge: An ode to the constrained Hamiltonian formalism. In: Brading, K., Castellani, E. (eds.) Symmetries in Physics: Philosophical Reflections, pp. 140–162. Cambridge University Press, Cambridge (2003)

    Chapter  Google Scholar 

  70. Hiley, B.: Towards a dynamics of moments: the role of algebraic deformation and inequivalent vacuum states. In: Bowden, K.G. (ed.) Correlations. Proceedings ANPA 23, pp. 104–134 (2001)

    Google Scholar 

  71. Hiley: (2001), p. 116

  72. Weyl, H.: Space Time Matter. Dover, New York (1952)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. M. Stuckey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silberstein, M., Stuckey, W.M. & McDevitt, T. Being, Becoming and the Undivided Universe: A Dialogue Between Relational Blockworld and the Implicate Order Concerning the Unification of Relativity and Quantum Theory. Found Phys 43, 502–532 (2013). https://doi.org/10.1007/s10701-012-9653-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-012-9653-9

Keywords

Navigation