Foundations of Physics

, Volume 43, Issue 1, pp 21–45 | Cite as

A Perspective on the Landscape Problem

  • Lee SmolinEmail author


I discuss the historical roots of the landscape problem and propose criteria for its successful resolution. This provides a perspective to evaluate the possibility to solve it in several of the speculative cosmological scenarios under study including eternal inflation, cosmological natural selection and cyclic cosmologies.

Invited contribution for a special issue of Foundations of Physics titled Forty Years Of String Theory: Reflecting On the Foundations.


String theory Landscape 



I am grateful to Roberto Mangabeira Unger for proposing a collaboration on evolving laws of nature which stimulated and sharpened many of the ideas and arguments contained here. Results of our joint work, on which this essay is partially based, will be published in [80]. I am grateful to many colleagues at Perimeter Institute including Niayesh Afshordi, Latham Bole, Matt Johnson and Neil Turok for conversations on these issues. I have also learned a great deal from the opportunity to listen to conferences where various attempts to resolve the landscape problem were critically examined. Research at Perimeter Institute for Theoretical Physics is supported in part by the Government of Canada through NSERC and by the Province of Ontario through MRI.


  1. 1.
    Smolin, L.: The Life of the Cosmos (1997). From Oxford University Press (in the USA), Weidenfeld and Nicolson (in the United Kingdom) and Einaudi Editorici (in Italy) Google Scholar
  2. 2.
    Strominger, A.: Superstrings with torsion. Nucl. Phys. B 274, 253 (1986) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Kachru, S., Kallosh, R., Linde, A., Trivedi, S.P.: de Sitter vacua in string theory. Phys. Rev. D 68, 046005 (2003). arXiv:hep-th/0301240 MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Susskind, L.: The anthropic landscape of string theory. arXiv:hep-th/0302219
  5. 5.
    Susskind, L.: The Cosmic Landscape: String Theory and the Illusion of Intelligent Design. Little Brown, New York (2006) Google Scholar
  6. 6.
    Vilenkin, A.: Birth of inflationary universes. Phys. Rev. D 27, 2848 (1983) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Linde, A.: The inflationary universe. Rep. Prog. Phys. 47, 925 (1984) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Linde, A., Linde, D., Mezhlumian, A.: From the big bang theory to the theory of a stationary universe. Phys. Rev. D 49, 1783 (1994). arXiv:gr-qc/9306035 ADSCrossRefGoogle Scholar
  9. 9.
    Garcia-Bellido, J., Linde, A.: Stationarity of inflation and predictions of quantum cosmology. Phys. Rev. D 51, 429 (1995). arXiv:hep-th/9408023 MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Garriga, J., Vilenkin, A.: A prescription for probabilities in eternal inflation. Phys. Rev. D 64, 023507 (2001). arXiv:gr-qc/0102090 ADSCrossRefGoogle Scholar
  11. 11.
    Steinhardt, P.J., Turok, N.: A cyclic model of the universe. Science 296, 1436 (2002) MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Steinhardt, P.J., Turok, N.: Cosmic evolution in a cyclic universe. Phys. Rev. D 65, 126003 (2002). arXiv:hep-th/0111098 MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Penrose, R.: Cycles of Time. Random House, New York (2011) Google Scholar
  14. 14.
    Gurzadyan, V.G., Penrose, R.: CCC-predicted low-variance circles in CMB sky and LCDM. arXiv:1104.5675
  15. 15.
    Gurzadyan, V.G., Penrose, R.: More on the low variance circles in CMB sky. arXiv:1012.1486
  16. 16.
    Gurzadyan, V.G., Penrose, R.: Concentric circles in WMAP data may provide evidence of violent pre-big-bang activity. arXiv:1011.3706
  17. 17.
    Wehus, I.K., Eriksen, H.K.: A search for concentric circles in the 7-year WMAP temperature sky maps. Astrophys. J. 733, L29 (2011). arXiv:1012.1268 ADSCrossRefGoogle Scholar
  18. 18.
    Moss, A., Scott, D., Zibin, J.P.: No evidence for anomalously low variance circles on the sky. arXiv:1012.1305
  19. 19.
    Hajian, A.: Are there echoes from the pre-big bang universe? A search for low variance circles in the CMB sky. arXiv:1012.1656
  20. 20.
    Lehners, J.-L.: Diversity in the phoenix universe. arXiv:1107.4551
  21. 21.
    Lehners, J.-L., Steinhardt, P.J., Turok, N.: The return of the phoenix universe. Int. J. Mod. Phys. D 18, 2231–2235 (2009). arXiv:0910.0834 ADSzbMATHCrossRefGoogle Scholar
  22. 22.
    Smolin, L.: Did the universe evolve? Class. Quantum Gravity 9, 173–191 (1992) MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Smolin, L.: On the fate of black hole singularities and the parameters of the standard model. arXiv:gr-qc/9404011, CGPG-94/3-5
  24. 24.
    Smolin, L.: Using neutrons stars and primordial black holes to test theories of quantum gravity. arXiv:astro-ph/9712189
  25. 25.
    Smolin, L.: Cosmology as a problem in critical phenomena. In: Lopez-Pena, R., Capovilla, R., Garcia-Pelayo, R., Waalebroeck, H., Zertuche, F. (eds.) The Proceedings of the Guanajuato Conference on Complex Systems and Binary Networks. Springer, Berlin (1995). arXiv:gr-qc/9505022 Google Scholar
  26. 26.
    Smolin, L.: Experimental signatures of quantum gravity. In: The Proceedings of the Fourth Drexel Conference on Quantum Nonintegrability. International Press, Somerville (to appear). arXiv:gr-qc/9503027
  27. 27.
    Smolin, L.: Scientific alternatives to the anthropic principle. In: Carr, B., et al. (eds.) Universe or Multiverse. Cambridge University Press, Cambridge (2007). arXiv:hep-th/0407213 Google Scholar
  28. 28.
    Smolin, L.: The status of cosmological natural selection. arXiv:hep-th/0612185
  29. 29.
    Popper, K.: Conjectures and Refutations, pp. 33–39. Routledge & Keagan Paul, London (1963) Google Scholar
  30. 30.
    Popper, K.: In: Schick, T. (ed.) Readings in the Philosophy of Science, pp. 9–13. Mayfield, Mountain View (2000) Google Scholar
  31. 31.
    Popper, K.: In: Schick, T. (ed.) The Open Society and Its Enemies (1946) Google Scholar
  32. 32.
    Popper, K.: In: Schick, T. (ed.) The Logic of Scientific Discovery (1959) Google Scholar
  33. 33.
    Wheeler, J.A.: In: Rees, M., Ruffini, R., Wheeler, J.A. (eds.) Black Holes, Gravitational Waves and Cosmology. Gordon & Breach, New York (1974) Google Scholar
  34. 34.
    Frolov, V.P., Markov, M.A., Mukhanov, M.A.: Through a black hole into a new universe? Phys. Lett. B 216, 272–276 (1989) MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    Lawrence, A., Martinec, E.: String field theory in curved space-time and the resolution of spacelike singularities. Class. Quantum Gravity 13, 63 (1996). arXiv:hep-th/9509149 MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. 36.
    Martinec, E.: Spacelike singularities in string theory. Class. Quantum Gravity 12, 941–950 (1995). arXiv:hep-th/9412074 MathSciNetADSzbMATHCrossRefGoogle Scholar
  37. 37.
    Bojowald, M.: Isotropic loop quantum cosmology. Class. Quantum Gravity 19, 2717–2742 (2002). arXiv:gr-qc/0202077 MathSciNetADSzbMATHCrossRefGoogle Scholar
  38. 38.
    Bojowald, M.: Inflation from quantum geometry. arXiv:gr-qc/0206054
  39. 39.
    Bojowald, M.: The semiclassical limit of loop quantum cosmology. Class. Quantum Gravity 18, L109–L116 (2001). arXiv:gr-qc/0105113 MathSciNetADSzbMATHCrossRefGoogle Scholar
  40. 40.
    Bojowald, M.: Dynamical initial conditions in quantum cosmology. Phys. Rev. Lett. 87, 121301 (2001). arXiv:gr-qc/0104072 MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    Tsujikawa, S., Singh, P., Maartens, R.: Loop quantum gravity effects on inflation and the CMB. arXiv:astro-ph/0311015
  42. 42.
    Gambini, R., Pullin, J.: Discrete quantum gravity: a mechanism for selecting the value of fundamental constants. Int. J. Mod. Phys. D 12, 1775–1782 (2003). arXiv:gr-qc/0306095 MathSciNetADSCrossRefGoogle Scholar
  43. 43.
    Dirac, P.A.M.: The relation between mathematics and physics. Proc. R. Soc. Edinb. 59, 122–129 (1939) zbMATHGoogle Scholar
  44. 44.
    Peirce, C.S.: The architecture of theories. Monist (1891). Reprinted in Buchler, J. (ed.) Philosophical Writings of Peirce. Dover, New York (1955) Google Scholar
  45. 45.
    Leibniz, G.W.: The Monadology (1698), translated by Robert Latta, availabe at
  46. 46.
    Leibniz, G.W.: In: Francks, R., Woolhouse, R.S. (eds.) Oxford Philosophical Texts. Oxford University Press, London (1999) Google Scholar
  47. 47.
    Alexander, H.G. (ed.): The Leibniz-Clarke Correspondence. Manchester University Press, Manchester (1956). For an annotated selection, see zbMATHGoogle Scholar
  48. 48.
    Rothman, T., Ellis, G.F.R.: Smolin’s natural selection hypothesis. Q. J. R. Astron. Soc. 34, 201–212 (1993) ADSGoogle Scholar
  49. 49.
    Vilenkin, A.: On cosmic natural selection. arXiv:hep-th/0610051
  50. 50.
    Harrison, E.R.: The natural selection of universes containing intelligent life. Q. J. R. Astron. Soc. 36(3), 193 (1995) ADSGoogle Scholar
  51. 51.
    Silk, J.: Review of Life of the Cosmos. Science 227, 644 (1997) CrossRefGoogle Scholar
  52. 52.
    Brown, G.E., Bethe, H.A.: A scenario for a large number of low mass black holes in the Galaxy. Astrophys. J. 423, 659 (1994) ADSCrossRefGoogle Scholar
  53. 53.
    Brown, G.E.: Accretion onto and radiation from the compact object formed in SN1987A. Astrophys. J. 436, 843 (1994) ADSCrossRefGoogle Scholar
  54. 54.
    Brown, G.E.: The equation of state of dense matter: supernovae, neutron stars and black holes. Nucl. Phys. A 574, 217 (1994) ADSCrossRefGoogle Scholar
  55. 55.
    Brown, G.E.: Kaon condensation in dense matter. Preprint Google Scholar
  56. 56.
    Bethe, H.A., Brown, G.E.: Observational constraints on the maximum neutron star mass. Preprint Google Scholar
  57. 57.
    Lattimer, J.M., Prakash, M.: What a two solar mass neutron star really means. 4. To appear in Gerry Brown’s Festschrift; Editor: Sabine Lee (World Scientific). arXiv:1012.3208
  58. 58.
    Feeney, S.M., Johnson, M.C., Mortlock, D.J., Peiris, H.V.: First observational tests of eternal inflation: analysis methods and WMAP 7-year results. Phys. Rev. D 84, 043507 (2011). arXiv:1012.3667 ADSCrossRefGoogle Scholar
  59. 59.
    Aguirre, A., Johnson, M.C.: A status report on the observability of cosmic bubble collisions. Rep. Prog. Phys. 74, 074901 (2011). arXiv:0908.4105 ADSCrossRefGoogle Scholar
  60. 60.
    Carter, B.: In: Longair, M. (ed.) Confrontation of Cosmological Theories with Observational Data, IAU Symposium, vol. 63, p. 291. Reidel, Dordrecht (1974) CrossRefGoogle Scholar
  61. 61.
    Carr, B.J., Rees, M.J.: Nature 278, 605 (1979) ADSCrossRefGoogle Scholar
  62. 62.
    Carter, B.: The significance of numerical coincidences in nature. Unpublished preprint, Cambridge University (1967) Google Scholar
  63. 63.
    Barrow, J.D., Tipler, F.J.: The Anthropic Cosmological Principle. Oxford University Press, Oxford (1986) Google Scholar
  64. 64.
    Smolin, L.: The Trouble with Physics. Houghton-Mifflin, Boston (2006) zbMATHGoogle Scholar
  65. 65.
    Weinberg, S.: Anthropic bound on the Cosmological Constant. Phys. Rev. Lett. 59, 2067 (1987) CrossRefGoogle Scholar
  66. 66.
    Weinberg, S.: A priori probability distribution of the cosmological constant. Phys. Rev. D 61, 103505 (2000). arXiv:astro-ph/0002387 MathSciNetADSCrossRefGoogle Scholar
  67. 67.
    Weinberg, S.: The cosmological constant problems. arXiv:astro-ph/0005265
  68. 68.
    Rees, M.J.: Anthropic Reasoning: clues to a fundamental theory. Complexity 3, 17 (1997) CrossRefGoogle Scholar
  69. 69.
    Rees, M.J.: In: Wickramasinghe, C., et al. (eds.) Fred Hoyle’s Universe. Kluwer Academic, Dordrecht (2003). arXiv:astro-ph/0401424 Google Scholar
  70. 70.
    Tegmark, M., Rees, M.J.: Why is the CMB fluctuation level 10−5? Astrophys. J. 499, 526 (1998). arXiv:astro-ph/9709058 ADSCrossRefGoogle Scholar
  71. 71.
    Graesser, M.L., Hsu, S.D.H., Jenkins, A., Wise, M.B.: Anthropic distribution for cosmological constant and primordial density perturbations. arXiv:hep-th/0407174
  72. 72.
    Garriga, J., Vilenkin, A.: Anthropic prediction for lambda and the Q catastrophe. Prog. Theor. Phys. Suppl. 163, 245–257 (2006). arXiv:hep-th/0508005 MathSciNetADSCrossRefGoogle Scholar
  73. 73.
    Kragh, H.: Higher Speculations: Grand Theories and Failed Revolutions in Physics and Cosmology. Oxford University Press, London (2011) zbMATHGoogle Scholar
  74. 74.
    Ahmed, M., Dodelson, S., Greene, P.B., Sorkin, R.: Everpresent lambda. arXiv:astro-ph/0209274
  75. 75.
    Ellis, G., Smolin, L.: The weak anthropic principle and the landscape of string theory. arXiv:0901.2414 [hep-th]
  76. 76.
    DeWolfe, O., Giryavets, A., Kachru, S., Taylor, W.: Type IIA moduli stabilization (2005). arXiv:hep-th/0505160
  77. 77.
    Shelton, J., Taylor, W., Wecht, B.: Generalized flux vacua (2006). arXiv:hep-th/0607015
  78. 78.
    Freidel, L.: Reconstructing AdS/CFT. arXiv:0804.0632
  79. 79.
    Gomes, H., Gryb, S., Koslowski, T., Mercati, F.: The gravity/CFT correspondence. arXiv:1105.0938
  80. 80.
    Mangabeira Unger, R., Smolin, L.: Book manuscript in preparation Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations