Skip to main content
Log in

An Improved Limit on Pauli-Exclusion-Principle Forbidden Atomic Transitions

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We have examined the atomic theory behind recent constraints on the violation of the Pauli Exclusion Principle derived from experiments that look for X-rays emitted from conductors while a large current is present. We also re-examine the assumptions underlying such experiments. We use the results of these studies to assess pilot measurements to develop an improved test of the Principle. We present an improved limit of \(\frac{1}{2}\beta^{2} < 2.6\times10^{-39}\) on the Pauli Exclusion Principle. This limit is the best to date for interactions between a system of fermions and a fermion that has not previously interacted with that given system. That is, for systems that do not obviously violate the Messiah-Greenberg symmetrization-postulate selection rule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aalseth, C.E., et al.: Results from a search for light-mass dark matter with a p-type point contact germanium detector. Phys. Rev. Lett. 106, 131301 (2011)

    Article  ADS  Google Scholar 

  2. Amado, R.D., Primakoff, H.: Comments on testing the Pauli principle. Phys. Rev. C 22, 1338 (1980)

    Article  ADS  Google Scholar 

  3. Arnold, R., et al.: Testing the Pauli exclusion principle with the NEMO-2 detector. Eur. Phys. J. A 6, 361 (1999)

    Article  ADS  Google Scholar 

  4. Back, H.O., et al.: New experimental limits on violations of the Pauli exclusion principle obtained with the Borexino Counting Test Facility. Eur. Phys. J. C 37, 421 (2004)

    Article  ADS  Google Scholar 

  5. Barabash, A.: Experimental test of the Pauli exclusion principle (2009)

  6. Barabash, A.S., Kornoukhov, V.N., Tspenyuk, Yu.M., Chapyzhnikov, B.A.: Search for anomalous carbon atoms—evidence of violation of the Pauli principle during the period of nucleosynthesis. JETP Lett. 68, 112 (1998)

    Article  ADS  Google Scholar 

  7. Baron, E., Mohapatra, R.N., Teplitz, V.L.: Limits on Pauli principle violation by nucleons. Phys. Rev. D 59, 036003 (1999)

    Article  ADS  Google Scholar 

  8. Bartalucci, S., et al.: New experimental limit on the Pauli exclusion principle violation by electrons. Phys. Lett. B 641, 18 (2006)

    Article  ADS  Google Scholar 

  9. Bartalucci, S., et al.: The VIP experimental limit on the Pauli exclusion principle violation by electrons. Found. Phys. 40, 765 (2009)

    Article  ADS  Google Scholar 

  10. Belli, P., et al.: New experimental limit on the electron stability and non-paulian transitions in Iodine atoms. Phys. Lett. B 460, 236 (1999)

    Article  ADS  Google Scholar 

  11. Bellini, G., et al.: New experimental limits on the Pauli forbidden transitions in 12C nuclei obtained with 485 days Borexino data. Phys. Rev. C 81, 034317 (2010)

    Article  ADS  Google Scholar 

  12. Bernabei, R., et al.: Search for non-paulian transitions in 23Na and 127I. Phys. Lett. B 408, 439 (1997)

    Article  ADS  Google Scholar 

  13. Bernabei, R., et al.: New search for processes violating the Pauli exclusion principle in sodium and in iodine. Eur. Phys. J. C 62, 327 (2009)

    Article  ADS  Google Scholar 

  14. Boswell, M., et al.: MaGe—a Geant4-based Monte Carlo application framework for low-background germanium experiments (2011)

  15. Budjáš, D., Heider, M.B., Chkvorets, O., Khanbekov, N., Schönert, S.: Pulse shape discrimination studies with a Broad-Energy Germanium detector for signal identification and background suppression in the GERDA double beta decay experiment. J. Instrum. 4, P10007 (2009)

    Article  Google Scholar 

  16. Budjáš, D., Heisel, M., Maneschg, W., Simgen, H.: Optimisation of the MC-model of a p-type Ge-spectrometer for the purpose of efficiency determination. Appl. Radiat. Isot. 67, 706 (2009)

    Article  Google Scholar 

  17. Chow, C.-K., Greenberg, O.W.: Quons in relativistic theories must be bosons or fermions. Phys. Lett. A 283, 20 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Corinaldesi, E.: Model of a dynamical theory of the Pauli principle. Suppl. Nuovo Cim. I5, 937 (1967)

    Google Scholar 

  19. Deilamian, K., Gillaspy, J.D., Kelleher, D.E.: Small violations of the symmetrization postulate in an excited state of helium. Phys. Rev. Lett. 74, 4787 (1995)

    Article  ADS  Google Scholar 

  20. Dolgov, A.D., Hansen, S.H., Smirnov, Y.A.: Neutrino statistics and big bang nucleosynthesis. J. Cosmol. Astropart. Phys. 6, 4 (2005)

    Article  ADS  Google Scholar 

  21. Ejiri, H., Toki, H.: Search for exotic nuclear transitions associated with nuclear instability. Phys. Lett. B 306, 218 (1993)

    Article  ADS  Google Scholar 

  22. Elliott, S.R., et al.: Proceedings of the Carolina International Symposium on Neutrino Physics, vol. 173. IOP Publishing, London (2010)

    Google Scholar 

  23. Goldhaber, M., Scharff-Goldhaber, G.: Identification of beta-rays with atomic electrons. Phys. Rev. 73, 1472 (1948)

    Article  ADS  Google Scholar 

  24. Govorkov, A.B.: Can the Pauli principle be deduced with local quantum field theory? Phys. Lett. A 137, 7 (1989)

    Article  ADS  Google Scholar 

  25. Greenberg, O.W.: Particles with small violations of Fermi or Bose statistics. Phys. Rev. D 43, 4111 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  26. Greenberg, O.W.: Theories of violation of statistics. AIP Conf. Proc. 545, 113 (2000)

    Article  ADS  Google Scholar 

  27. Greenberg, O.W., Mohapatra, R.N.: Local quantum field theory of possible violation of the Pauli principle. Phys. Rev. Lett. 59, 2507 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  28. Greenberg, O.W., Mohapatra, R.N.: Phenomenology of small violations of Fermi and Bose statistics. Phys. Rev. D 39, 2032 (1989)

    Article  ADS  Google Scholar 

  29. Guiseppe, V.E., et al.: The Majorana neutrinoless double-beta decay experiment. In: Nucl. Sci. Symp. Conf. Rec. NSS’08, p. 1793 (2008)

    Google Scholar 

  30. Haff, P.K., Vogel, P., Winther, A.: Capture of negative muons in atoms. Phys. Rev. A 10, 1430 (1974)

    Article  ADS  Google Scholar 

  31. Haynes, W.M. (ed.): CRC Handbook of Chemistry and Physics Internet Version, 91st edn. CRC Press/Taylor and Francis, Boca Raton (2011) (Internet Version 2011)

    Google Scholar 

  32. Howe, M.A., Cox, G.A., Harvey, P.J., McGirt, F., Rielage, K., Wilkerson, J.F., Wouters, J.M.: Sudbury neutrino observatory neutral current detector acquisition software overview. IEEE Trans. Nucl. Sci. 51, 878–883 (2004)

    Article  ADS  Google Scholar 

  33. Ignatiev, A.Y., Kuzmin, V.A.: Is a weak violation of the Pauli principle possible? Sov. J. Nucl. Phys. 461, 786 (1987)

    Google Scholar 

  34. Javorsek, D. II, et al.: New experimental test of the Pauli exclusion principle using accelerator mass spectrometry. Phys. Rev. Lett. 85, 2701 (2000)

    Article  ADS  Google Scholar 

  35. Kekez, D., Ljubičić, A., Logan, B.A.: An upper limit to violations of the Pauli exclusion principle. Nature 348, 224 (1990)

    Article  ADS  Google Scholar 

  36. Kim, Y.S., Pratt, R.H.: Radiative recombination of electrons with atomic ions: cross sections and rate coefficients. Phys. Rev. A 27, 2913 (1983)

    Article  ADS  Google Scholar 

  37. Kishimoto, T., et al.: Search for violation of the Pauli principle through spontaneous neutron emission from lead. J. Phys. G 18, 443 (1992)

    Article  ADS  Google Scholar 

  38. Logan, B., Ljubičić, A.: Validity of the Pauli exclusion principle for nucleons. Phys. Rev. C 20, 1957 (1979)

    Article  ADS  Google Scholar 

  39. Messiah, A.M.L., Greenberg, O.W.: Symmetrization postulate and its experimental foundation. Phys. Rev. 136, B248 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  40. Miljanić, D., et al.: Test of the Pauli principle in nuclear reactions. Phys. Lett. B 252, 487 (1990)

    Article  ADS  Google Scholar 

  41. Nolte, E., et al.: Accelerator mass spectrometry for tests of the Pauli exclusion principle and for detection of beta beta decay products. J. Phys. G, Nucl. Part. Phys. 17, S355 (1991)

    Article  ADS  Google Scholar 

  42. Novikov, V.M., et al.: Test of the Pauli exclusion principle for atomic electrons. Phys. Lett. B 240, 227 (1990)

    Article  ADS  Google Scholar 

  43. Okun, L.B.: Possible violation of the Pauli principle in atoms. JETP Lett. 46, 529 (1987)

    ADS  Google Scholar 

  44. Okun, L.B.: Tests of electric charge conservation and the Pauli principle. Phys. Usp. 158, 293 (1989). Sov. Phys. Usp. 32, 543 (1989)

    Article  Google Scholar 

  45. ORTEC: 801 South Illinois Avenue Oak Ridge, TN 37830, USA (2009)

  46. Pauli, W.: Uber den Zusammenhang des Abschlusses der Elektronen- gruppen im Atom mit der Komplexstruktur der Spektren. Z. Phys. 31, 765 (1925)

    Article  ADS  MATH  Google Scholar 

  47. Plaga, R.: Violations of the Pauli principle and the interior of the sun. Z. Phys. A 333, 397 (1989)

    ADS  Google Scholar 

  48. Ramberg, E., Snow, G.A.: Experimental limit on a small violation of the Pauli principle. Phys. Lett. B 238, 438 (1990)

    Article  ADS  Google Scholar 

  49. Reines, F., Sobel, H.W.: Test of the Pauli exclusion principle for atomic electrons. Phys. Rev. Lett. 32, 954 (1974)

    Article  ADS  Google Scholar 

  50. Shimony, A.: Proposed experiment to test the possible time dependence of the onset of the Pauli exclusion principle. Quantum Inf. Process. 5, 277 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  51. Suzuki, Y., et al.: Study of invisible nucleon decay, \(n \rightarrow\nu\nu\bar {\nu }\), and a forbidden nuclear transition in the Kamiokande Detector. Phys. Lett. B 311, 357 (1993)

    Article  ADS  Google Scholar 

  52. Thoma, M.H., Nolte, E.: Limits on small violations of the Pauli exclusion principle in the primordial nucleosynthesis. Phys. Lett. B 291, 484 (1992)

    Article  ADS  Google Scholar 

  53. Zerrad, E., Hahn, Y.: Radiative recombination at low energies. J. Quant. Spectrosc. Radiat. Transf. 59, 637 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the U.S. Department of Energy, Office of Nuclear Physics under Contract No. 2011LANLE9BW. MHC’s work was performed under the auspices of the U.S. Department of energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. We thank Keith Rielage and Yuri Efremenko for a careful reading of the manuscript. We thank Larry Rodriguez and Harry Salazar for helpful technical discussions. We thank P. Vogel, R. Mohapatra, and O.W. Greenberg for useful discussions of the theory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Elliott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elliott, S.R., LaRoque, B.H., Gehman, V.M. et al. An Improved Limit on Pauli-Exclusion-Principle Forbidden Atomic Transitions. Found Phys 42, 1015–1030 (2012). https://doi.org/10.1007/s10701-012-9643-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-012-9643-y

Keywords

Navigation