Foundations of Physics

, Volume 42, Issue 5, pp 674–684 | Cite as

Quantum Counterfactuals and Locality



Stapp’s counterfactual argument for quantum nonlocality based upon a Hardy entangled state is shown to be flawed. While he has correctly analyzed a particular framework using the method of consistent histories, there are alternative frameworks which do not support his argument. The framework dependence of quantum counterfactual arguments, with analogs in classical counterfactuals, vitiates the claim that nonlocal (superluminal) influences exist in the quantum world. Instead it shows that counterfactual arguments are of limited use for analyzing these questions.


Quantum Counterfactual Nonlocality 



I thank Henry Stapp for providing a preliminary version of [1], for several rounds of correspondence which forced me to clarify my thinking about quantum counterfactuals, and for comments on a draft version of this manuscript. The research described here received support from the National Science Foundation through Grants PHY-0757251 and PHY-1068331.


  1. 1.
    Stapp, H.: Quantum locality? Found. Phys. (2012). doi: 10.1007/s10701-012-9632-1. arXiv:1111.5364 Google Scholar
  2. 2.
    Griffiths, R.B.: Quantum locality. Found. Phys. 41, 705–733 (2011). arXiv:0908.2914 MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Griffiths, R.B.: Consistent Quantum Theory. Cambridge University Press, Cambridge (2002). MATHGoogle Scholar
  4. 4.
    Griffiths, R.B.: Consistent histories. In: Greenberger, D., Hentschel, K., Weinert, F. (eds.) Compendium of Quantum Physics, pp. 117–122. Springer, Berlin (2009) CrossRefGoogle Scholar
  5. 5.
    Hohenberg, P.C.: An introduction to consistent quantum theory. Rev. Mod. Phys. 82, 2835–2844 (2010). arXiv:0909.2359v3 MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Griffiths, R.B.: EPR, Bell, and quantum locality. Am. J. Phys. 79, 954–965 (2011). arXiv:1007.4281 ADSCrossRefGoogle Scholar
  7. 7.
    Hardy, L.: Nonlocality for two particles without inequalities for almost all entangled states. Phys. Rev. Lett. 71, 1665–1668 (1993) MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Stapp, H.: Private communication Google Scholar
  9. 9.
    Hardy, L.: Quantum mechanics, local realistic theories and Lorentz-invariant realistic theories. Phys. Rev. Lett. 68, 2981–2984 (1992) MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    Griffiths, R.B.: Correlations in separated quantum systems: a consistent history analysis of the EPR problem. Am. J. Phys. 55, 11–17 (1987) ADSCrossRefGoogle Scholar
  11. 11.
    Griffiths, R.B.: Consistent resolution of some relativistic quantum paradoxes. Phys. Rev. A 66, 062101 (2002). quant-ph/0207015 MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Griffiths, R.B.: A consistent quantum ontology. arXiv:1105.3932v1 [quant-ph];, 2011
  13. 13.
    Griffiths, R.B.: Choice of consistent family, and quantum incompatibility. Phys. Rev. A 57, 1604–1618 (1998). quant-ph/9708028 ADSCrossRefGoogle Scholar
  14. 14.
    Maudlin, T.: How Bell reasoned: a reply to Griffiths. Am. J. Phys. 79, 954–965 (2011) CrossRefGoogle Scholar
  15. 15.
    Griffiths, R.B.: The logic of consistent histories: a reply to Maudlin. arXiv:1110.0974v1 [quant-ph] (2011)

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Physics DepartmentCarnegie-Mellon UniversityPittsburghUSA

Personalised recommendations