Foundations of Physics

, Volume 42, Issue 5, pp 595–614 | Cite as

The Blackbody Radiation Spectrum Follows from Zero-Point Radiation and the Structure of Relativistic Spacetime in Classical Physics

  • Timothy H. Boyer


The analysis of this article is entirely within classical physics. Any attempt to describe nature within classical physics requires the presence of Lorentz-invariant classical electromagnetic zero-point radiation so as to account for the Casimir forces between parallel conducting plates at low temperatures. Furthermore, conformal symmetry carries solutions of Maxwell’s equations into solutions. In an inertial frame, conformal symmetry leaves zero-point radiation invariant and does not connect it to non-zero-temperature; time-dilating conformal transformations carry the Lorentz-invariant zero-point radiation spectrum into zero-point radiation and carry the thermal radiation spectrum at non-zero temperature into thermal radiation at a different non-zero temperature. However, in a non-inertial frame, a time-dilating conformal transformation carries classical zero-point radiation into thermal radiation at a finite non-zero-temperature. By taking the no-acceleration limit, one can obtain the Planck radiation spectrum for blackbody radiation in an inertial frame from the thermal radiation spectrum in an accelerating frame. Here this connection between zero-point radiation and thermal radiation is illustrated for a scalar radiation field in a Rindler frame undergoing relativistic uniform proper acceleration through flat spacetime in two spacetime dimensions. The analysis indicates that the Planck radiation spectrum for thermal radiation follows from zero-point radiation and the structure of relativistic spacetime in classical physics.


Blackbody radiation Thermal equilibrium Scaling symmetry Classical electromagnetism Rindler frame Relativistic spacetime Conformal symmetry 



I would like to thank Professor Parameswaran Nair for helpful conversations regarding conformal symmetry. The discussion of the Appendix is that provided by an anonymous referee.


  1. 1.
    Boyer, T.H.: Derivation of the Planck spectrum for relativistic classical scalar radiation from thermal equilibrium in an accelerating frame. Phys. Rev. D 81, 105024 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    Boyer, T.H.: Classical physics of thermal scalar radiation in two spacetime dimensions. Am. J. Phys. 79, 644–656 (2011) ADSCrossRefGoogle Scholar
  3. 3.
    Eisberg, R., Resnick, R.: Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, 2nd edn. Wiley, New York (1985) Google Scholar
  4. 4.
    Boyer, T.H.: Blackbody radiation and the scaling symmetry of relativistic classical electron theory with classical electromagnetic zero-point radiation. Found. Phys. 40, 1102–1116 (2010) ADSMATHCrossRefGoogle Scholar
  5. 5.
    van Vleck, J.H.: The absorption of radiation by multiply periodic orbits, and its relation to the correspondence principle and the Rayleigh-Jeans law: Part II. Calculation of absorption by multiply periodic orbits. Phys. Rev. 24, 347–365 (1924) ADSCrossRefGoogle Scholar
  6. 6.
    Boyer, T.H.: Equilibrium of random classical electromagnetic radiation in the presence of a nonrelativistic nonlinear electric dipole oscillator. Phys. Rev. D 13, 2832–2845 (1976) ADSCrossRefGoogle Scholar
  7. 7.
    Boyer, T.H.: Statistical equilibrium of nonrelativistic multiply periodic classical systems and random classical electromagnetic radiation. Phys. Rev. A 18, 1228–1237 (1978) ADSCrossRefGoogle Scholar
  8. 8.
    Cunningham, E.: The principle of relativity in electrodynamics and an extension thereof. Proc. Lond. Math. Soc. 8, 77–98 (1910) CrossRefGoogle Scholar
  9. 9.
    Bateman, H.: The transformation of the electrodynamical equations. Proc. Lond. Math. Soc. 8, 223–264 (1910) MATHCrossRefGoogle Scholar
  10. 10.
    Kastrup, H.A.: Zur physikalischen Deuting und darstellungstheoretischen Analyse der konformen Transformationen der Raum und Zeit. Ann. Phys. (Leipz.) 9, 388–428 (1962) MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    Boyer, T.H.: Scaling symmetry and thermodynamic equilibrium for classical electromagnetic radiation. Found. Phys. 19, 1371–1383 (1989) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Rindler, W.: Essential Relativity: Special, General, and Cosmological, 2nd edn. Springer, New York (1977), pp. 49–51 MATHGoogle Scholar
  13. 13.
    Schutz, B.F.: A First Course in General Relativity, Cambridge Univ. Press, Cambridge (1986), p. 150 MATHGoogle Scholar
  14. 14.
    Fulton, T., Rohrlich, F., Witten, L.: Conformal invariance in physics. Rev. Mod. Phys. 34, 442–457 (1962) MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    Sparnaay, M.J.: Measurement of the attractive forces between flat plates. Physica (Amsterdam) 24, 751–764 (1958) ADSCrossRefGoogle Scholar
  16. 16.
    Lamoreaux, S.K.: Demonstration of the Casimir force in the 0.6 to 6 µm range. Phys. Rev. Lett. 78, 5–8 (1997). Erratum: Phys. Rev. Lett. 81, 5475–5476 (1998) ADSCrossRefGoogle Scholar
  17. 17.
    Mohideen, U.: Precision measurement of the Casimir force from 0.1 to 0.9 µm. Phys. Rev. Lett. 81, 4549–4552 (1998) ADSCrossRefGoogle Scholar
  18. 18.
    Chan, H.B., Aksyuk, V.A., Kleinman, R.N., Bishop, D.J., Capasso, F.: Quantum mechanical actuation of microelectromechanical systems by the Casimir force. Science 291, 1941–1944 (2001) ADSCrossRefGoogle Scholar
  19. 19.
    Bressi, G., Caarugno, G., Onofrio, R., Ruoso, G.: Measurement of the Casimir force between parallel metallic surfaces. Phys. Rev. Lett. 888, 041804(4) (2002) ADSGoogle Scholar
  20. 20.
    Casimir, H.B.G.: On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 51, 793–795 (1948) MATHGoogle Scholar
  21. 21.
    Boyer, T.H.: Random electrodynamics: the theory of classical electrodynamics with classical electromagnetic zero-point radiation. Phys. Rev. 11, 790–808 (1975) ADSGoogle Scholar
  22. 22.
    Marshall, T.W.: Statistical electrodynamics. Proc. Camb. Philos. Soc. 61, 537–546 (1965) ADSMATHCrossRefGoogle Scholar
  23. 23.
    Boyer, T.H.: Derivation of the blackbody radiation spectrum without quantum assumptions. Phys. Rev. 182, 1374–1383 (1969) ADSCrossRefGoogle Scholar
  24. 24.
    Boyer, T.H.: Conformal symmetry of classical electromagnetic zero-point radiation. Found. Phys. 19, 349–365 (1989) MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Rice, S.O.: In: Wax, N. (ed.) Selected Papers on Noise and Stochastic Processes, p. 133. Dover, New York (1954) Google Scholar
  26. 26.
    Fulling, S.A., Davies, P.C.W.: Radiation from a moving mirror in two dimensional space-time: conformal anomaly. Proc. R. Soc. Lond. A 348, 393–414 (1976), p. 407 MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    Boyer, T.H.: Temperature dependence of Van der Waals forces in classical electrodynamics with classical electromagnetic zero-point radiation. Phys. Rev. A 11, 1650–1663 (1975) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of PhysicsCity College of the City University of New YorkNew YorkUSA

Personalised recommendations