Foundations of Physics

, Volume 42, Issue 4, pp 555–581 | Cite as

Changes of Separation Status During Registration and Scattering

  • P. HájíčekEmail author


In our previous work, a new approach to the notorious problem of quantum measurement was proposed. Existing treatments of the problem were incorrect because they ignored the disturbance of measurement by identical particles and standard quantum mechanics had to be modified to obey the cluster separability principle. The key tool was the notion of separation status. Changes of separation status occur during preparations, registrations and scattering on macroscopic targets. Standard quantum mechanics does not provide any correct rules that would govern these changes. This gives us the possibility to add new rules to quantum mechanics that would satisfy the objectification requirement. The method of the present paper is to start from the standard unitary evolution and then introduce minimal corrections. Several representative examples of registration and particle scattering on macroscopic targets are analysed case by case in order to see their common features. The resulting general Rule of Separation Status Changes is stated in the Conclusion.


Problem of quantum measurement Cluster separability Reformed quantum mechanics Detectors Probability reproducibility Objectification requirement 



The author is indebted to Uwe-Jens Wiese for drawing his attention to the Hanbury Brown and Twiss effect, to an anonymous referee for mentioning the work by K.K. Wan and Jiří Tolar for useful discussions.


  1. 1.
    Hájíček, P., Tolar, J.: Found. Phys. 39, 411 (2009) MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    Hájíček, P.: Found. Phys. 39, 1072 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Hájíček, P.: Found. Phys. 41, 640 (2011). arXiv:1001.1827 MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Hájíček, P., Tolar, J.: Acta Phys. Slovaca 60, 613–716 (2010) ADSCrossRefGoogle Scholar
  5. 5.
    Hájíček, P.: Inst. Phys. Conf. Ser. 306, 012035 (2011) CrossRefGoogle Scholar
  6. 6.
    Busch, P., Lahti, P.J., Mittelstaedt, P.: The Quantum Theory of Measurement. Springer, Heidelberg (1996) zbMATHGoogle Scholar
  7. 7.
    Bassi, A., Ghirardi, G.: Phys. Lett. A 275, 373 (2000) MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Wan, K.K., McLean, R.G.D.: J. Phys. A, Math. Gen. 17, 837 (1984) MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Kong Wan, K.: From Micro to Macro Quantum Systems. A Unified Formalism with Superselection rules and its Applications. Imperial College Press, London (2006) zbMATHGoogle Scholar
  10. 10.
    Beltrametti, E.G., Cassinelli, G., Lahti, P.J.: J. Math. Phys. 31, 91 (1990) MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Leo, W.R.: Techniques for Nuclear and Particle Physics Experiments. Springer, Berlin (1987) CrossRefGoogle Scholar
  12. 12.
    Twerenbold, D.: Rep. Prog. Phys. 59, 239 (1996) CrossRefGoogle Scholar
  13. 13.
    Einstein, A., Podolsky, B., Rosen, N.: Phys. Rev. 47, 777 (1935) ADSzbMATHCrossRefGoogle Scholar
  14. 14.
    Bohm, D.: Quantum Theory. Prentice Hall, New York (1951), p. 614 Google Scholar
  15. 15.
    Kayser, B., Stodolsky, L.: Phys. Lett. 395, 343 (1995) Google Scholar
  16. 16.
    Hanbury Brown, R., Twiss, R.Q.: Nature 178, 1046 (1956) ADSCrossRefGoogle Scholar
  17. 17.
    Fano, U.: Am. J. Phys. 29, 536 (1961) ADSGoogle Scholar
  18. 18.
    Mott, N.F.: Proc. R. Soc. Lond. Ser. A 126, 79 (1929) ADSzbMATHCrossRefGoogle Scholar
  19. 19.
    Heisenberg, W.: Physical Principles of the Quantum Theory. Dover, New York (1930) zbMATHGoogle Scholar
  20. 20.
    Dell’Antonio, G., Figari, R., Teta, A.: J. Math. Phys. 49, 042105 (2008) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Davisson, C., Germer, L.: Phys. Rev. 30, 705 (1927) ADSCrossRefGoogle Scholar
  22. 22.
    Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of BernBernSwitzerland

Personalised recommendations